亚洲天堂中文字幕一区二区|亚洲精品无播放器在线播放网站|亚洲精品熟女国产国产老熟女|亚洲欧美在线人成最新按摩

        
        
      • <form id="etzky"></form>
          <td id="etzky"><tr id="etzky"></tr></td>

          高中生的數(shù)學(xué)解題技巧

          時間:2021-01-16 14:08:55 高中數(shù)學(xué) 我要投稿

          高中生必備的數(shù)學(xué)解題技巧

            導(dǎo)語:高中的數(shù)學(xué)和初中的數(shù)學(xué)最大的區(qū)別,高中得出學(xué)習(xí)更注重的是學(xué)習(xí)的方法,下面是小編為大家準(zhǔn)備的高中數(shù)學(xué)學(xué)習(xí)方法,希望對大家有所幫助。歡迎閱讀,僅供參考,更多相關(guān)的知識,請關(guān)注CNFLA學(xué)習(xí)網(wǎng)

          高中生必備的數(shù)學(xué)解題技巧

            經(jīng)典的數(shù)學(xué)學(xué)習(xí)方法:

            數(shù)學(xué)解題的思維過程

            數(shù)學(xué)解題的思維過程是指從理解問題開始,經(jīng)過探索思路,轉(zhuǎn)換問題直至解決問題,進(jìn)行回顧的全過程的思維活動。

            對于數(shù)學(xué)解題思維過程,G . 波利亞提出了四個階段*(見附錄),即弄清問題、擬定計(jì)劃、實(shí)現(xiàn)計(jì)劃和回顧。這四個階段思維過程的實(shí)質(zhì),可以用下列八個字加以概括:理解、轉(zhuǎn)換、實(shí)施、反思。

            第一階段:理解問題是解題思維活動的開始。

            第二階段:轉(zhuǎn)換問題是解題思維活動的核心,是探索解題方向和途徑的積極的嘗試發(fā)現(xiàn)過程,是思維策略的選擇和調(diào)整過程。

            第三階段:計(jì)劃實(shí)施是解決問題過程的實(shí)現(xiàn),它包含著一系列基礎(chǔ)知識和基本技能的靈活運(yùn)用和思維過程的具體表達(dá),是解題思維活動的重要組成部分。

            第四階段:反思問題往往容易為人們所忽視,它是發(fā)展數(shù)學(xué)思維的一個重要方面,是一個思維活動過程的結(jié)束包含另一個新的思維活動過程的`開始。

            數(shù)學(xué)解題的技巧

            為了使回想、聯(lián)想、猜想的方向更明確,思路更加活潑,進(jìn)一步提高探索的成效,我們必須掌握一些解題的策略。

            一切解題的策略的基本出發(fā)點(diǎn)在于“變換”,即把面臨的問題轉(zhuǎn)化為一道或幾道易于解答的新題,以通過對新題的考察,發(fā)現(xiàn)原題的解題思路,最終達(dá)到解決原題的目的。

            基于這樣的認(rèn)識,常用的解題策略有:熟悉化、簡單化、直觀化、特殊化、一般化、整體化、間接化等。

            一、 熟悉化策略所謂熟悉化策略,就是當(dāng)我們面臨的是一道以前沒有接觸過的陌生題目時,要設(shè)法把它化為曾經(jīng)解過的或比較熟悉的題目,以便充分利用已有的知識、經(jīng)驗(yàn)或解題模式,順利地解出原題。

            一般說來,對于題目的熟悉程度,取決于對題目自身結(jié)構(gòu)的認(rèn)識和理解。從結(jié)構(gòu)上來分析,任何一道解答題,都包含條件和結(jié)論(或問題)兩個方面。因此,要把陌生題轉(zhuǎn)化為熟悉題,可以在變換題目的條件、結(jié)論(或問題)以及它們的聯(lián)系方式上多下功夫。

            常用的途徑有:

            (一)、充分聯(lián)想回憶基本知識和題型:

            按照波利亞的觀點(diǎn),在解決問題之前,我們應(yīng)充分聯(lián)想和回憶與原有問題相同或相似的知識點(diǎn)和題型,充分利用相似問題中的方式、方法和結(jié)論,從而解決現(xiàn)有的問題。

            (二)、全方位、多角度分析題意:

            對于同一道數(shù)學(xué)題,常?梢圆煌膫(cè)面、不同的角度去認(rèn)識。因此,根據(jù)自己的知識和經(jīng)驗(yàn),適時調(diào)整分析問題的視角,有助于更好地把握題意,找到自己熟悉的解題方向。

            (三)恰當(dāng)構(gòu)造輔助元素:

            數(shù)學(xué)中,同一素材的題目,常常可以有不同的表現(xiàn)形式;條件與結(jié)論(或問題)之間,也存在著多種聯(lián)系方式。因此,恰當(dāng)構(gòu)造輔助元素,有助于改變題目的形式,溝通條件與結(jié)論(或條件與問題)的內(nèi)在聯(lián)系,把陌生題轉(zhuǎn)化為熟悉題。

            數(shù)學(xué)解題中,構(gòu)造的輔助元素是多種多樣的,常見的有構(gòu)造圖形(點(diǎn)、線、面、體),構(gòu)造算法,構(gòu)造多項(xiàng)式,構(gòu)造方程(組),構(gòu)造坐標(biāo)系,構(gòu)造數(shù)列,構(gòu)造行列式,構(gòu)造等價性命題,構(gòu)造反例,構(gòu)造數(shù)學(xué)模型等等。

            二、簡單化策略

            所謂簡單化策略,就是當(dāng)我們面臨的是一道結(jié)構(gòu)復(fù)雜、難以入手的題目時,要設(shè)法把轉(zhuǎn)化為一道或幾道比較簡單、易于解答的新題,以便通過對新題的考察,啟迪解題思路,以簡馭繁,解出原題。

            簡單化是熟悉化的補(bǔ)充和發(fā)揮。一般說來,我們對于簡單問題往往比較熟悉或容易熟悉。

            因此,在實(shí)際解題時,這兩種策略常常是結(jié)合在一起進(jìn)行的,只是著眼點(diǎn)有所不同而已。

            解題中,實(shí)施簡單化策略的途徑是多方面的,常用的有: 尋求中間環(huán)節(jié),分類考察討論,簡化已知條件,恰當(dāng)分解結(jié)論等。

            1、尋求中間環(huán)節(jié),挖掘隱含條件:

            在些結(jié)構(gòu)復(fù)雜的綜合題,就其生成背景而論,大多是由若干比較簡單的基本題,經(jīng)過適當(dāng)組合抽去中間環(huán)節(jié)而構(gòu)成的。

            因此,從題目的因果關(guān)系入手,尋求可能的中間環(huán)節(jié)和隱含條件,把原題分解成一組相互聯(lián)系的系列題,是實(shí)現(xiàn)復(fù)雜問題簡單化的一條重要途徑。

            2、分類考察討論:

            在些數(shù)學(xué)題,解題的復(fù)雜性,主要在于它的條件、結(jié)論(或問題)包含多種不易識別的可能情形。對于這類問題,選擇恰當(dāng)?shù)姆诸悩?biāo)準(zhǔn),把原題分解成一組并列的簡單題,有助于實(shí)現(xiàn)復(fù)雜問題簡單化。

            3、簡單化已知條件:

            有些數(shù)學(xué)題,條件比較抽象、復(fù)雜,不太容易入手。這時,不妨簡化題中某些已知條件,甚至?xí)簳r撇開不顧,先考慮一個簡化問題。這樣簡單化了的問題,對于解答原題,常常能起到穿針引線的作用。

            4、恰當(dāng)分解結(jié)論:

            有些問題,解題的主要困難,來自結(jié)論的抽象概括,難以直接和條件聯(lián)系起來,這時,不妨猜想一下,能否把結(jié)論分解為幾個比較簡單的部分,以便各個擊破,解出原題。

            三、直觀化策略:

            所謂直觀化策略,就是當(dāng)我們面臨的是一道內(nèi)容抽象,不易捉摸的題目時,要設(shè)法把它轉(zhuǎn)化為形象鮮明、直觀具體的問題,以便憑借事物的形象把握題中所及的各對象之間的聯(lián)系,找到原題的解題思路。

            (一)、圖表直觀:

            有些數(shù)學(xué)題,內(nèi)容抽象,關(guān)系復(fù)雜,給理解題意增添了困難,常常會由于題目的抽象性和復(fù)雜性,使正常的思維難以進(jìn)行到底。

            對于這類題目,借助圖表直觀,利用示意圖或表格分析題意,有助于抽象內(nèi)容形象化,復(fù)雜關(guān)系條理化,使思維有相對具體的依托,便于深入思考,發(fā)現(xiàn)解題線索。

            (二)、圖形直觀:

            有些涉及數(shù)量關(guān)系的題目,用代數(shù)方法求解,道路崎嶇曲折,計(jì)算量偏大。這時,不妨借助圖形直觀,給題中有關(guān)數(shù)量以恰當(dāng)?shù)膸缀畏治觯貙捊忸}思路,找出簡捷、合理的解題途徑。

            (三)、圖象直觀:

            不少涉及數(shù)量關(guān)系的題目,與函數(shù)的圖象密切相關(guān),靈活運(yùn)用圖象的直觀性,常常能以簡馭繁,獲取簡便,巧妙的解法。

            四、特殊化策略

            所謂特殊化策略,就是當(dāng)我們面臨的是一道難以入手的一般性題目時,要注意從一般退到特殊,先考察包含在一般情形里的某些比較簡單的特殊問題,以便從特殊問題的研究中,拓寬解題思路,發(fā)現(xiàn)解答原題的方向或途徑。

            五、一般化策略

            所謂一般化策略,就是當(dāng)我們面臨的是一個計(jì)算比較復(fù)雜或內(nèi)在聯(lián)系不甚明顯的特殊問題時,要設(shè)法把特殊問題一般化,找出一個能夠揭示事物本質(zhì)屬性的一般情形的方法、技巧或結(jié)果,順利解出原題

          【高中生的數(shù)學(xué)解題技巧】相關(guān)文章:

          小學(xué)數(shù)學(xué)的解題技巧02-01

          考研數(shù)學(xué)解題技巧02-02

          初中數(shù)學(xué)解題技巧01-29

          初中數(shù)學(xué)的解題技巧04-03

          小學(xué)數(shù)學(xué)必備的數(shù)學(xué)解題技巧10-01

          初中數(shù)學(xué)解題方法:數(shù)學(xué)解題技巧01-19

          小學(xué)數(shù)學(xué)必會解題技巧02-01

          數(shù)學(xué)函數(shù)解題技巧分享02-01

          數(shù)學(xué)沖刺必備的解題技巧02-02