Д(sh)W(xu)ijʽR
(do)ZеĔ(sh)W(xu)ʽ(f)ҏ(f)sڸ߿Ќ(sh)W(xu)ʽ\(yn)eҌʽ\(yn)Ҫ`СҿY(ji)˳õĔ(sh)W(xu)ʽ!gӭxHP(gun)֪R(sh)ՈP(gun)עCNFLAW(xu)(x)W(wng)ęĿ!
x(yu)㷶:
һһ(sh)W(xu)ʽ
ɽǺʽ
sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA
cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB
tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB)
ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)
ǹʽ
tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctga
cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a
ǹʽ
sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)
cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)
tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))
ctg(A/2)=√((1+cosA)/((1-cosA)) ctg(A/2)=-√((1+cosA)/((1-cosA))
Ͳe
2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B)
2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)
sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2)
tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosB
ctgA+ctgBsin(A+B)/sinAsinB -ctgA+ctgBsin(A+B)/sinAsinB
ijЩ(sh)ǰn(xing)
1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2 1+3+5+7+9+11+13+15+…+(2n-1)=n2
2+4+6+8+10+12+14+…+(2n)=n(n+1) 12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6
13+23+33+43+53+63+…n3=n2(n+1)2/4 1*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3
Ҷ a/sinA=b/sinB=c/sinC=2R ע R ʾεӈA돽
Ҷ b2=a2+c2-2accosB עB߅a߅cĊA
Lʽ l=a*r aLjAĽǵĻȔ(sh)r >0 eʽ s=1/2*l*r
˷cʽ a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b(a2+ab+b2)
Dzʽ |a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b<=>-b≤a≤b
|a-b|≥|a|-|b| -|a|≤a≤|a|
һԪη̵Ľ -b+√(b2-4ac)/2a -b-√(b2-4ac)/2a
cϵ(sh)P(gun)ϵ X1+X2=-b/a X1*X2=c/a עf_(d)
Єeʽ
b2-4ac=0 עЃɂ(g)ȵČ(sh)
b2-4ac>0 עЃɂ(g)ȵČ(sh)
b2-4ac<0 ע̛]Ќ(sh)йܗ(f)(sh)
繫ʽ
(sin^2)x=1-cos2x/2
(cos^2)x=i=cos2x/2
fܹʽ
tan(a/2)=t
sina=2t/(1+t^2)
cosa=(1-t^2)/(1+t^2)
tana=2t/(1-t^2)
߶(sh)W(xu)ʽ
(һ)wP(gun)}
1.F_(ti)ĽY(ji)(gu)
(1)
һЃɂ(g)滥ƽУ涼߅ÿɂ(g)߅εĹ߅ƽ@ЩɵĎw;Ѓɂ(g)ƽеĵ棬Q;Ă(c);(c)Ĺ߅Ă(c);(c)cĹc(din)c(din)
߅Ρ߅……քe……
AԾεһ߅ڵֱD(zhun)S߅D(zhun)γɵɵĎwA;D(zhun)SAS;ֱS߅D(zhun)ɵAĂ(c);oՓD(zhun)ʲôλãֱS߅A(c)ĸ
cAy(tng)Qw;
(2)F
Fһһ(g)Ƕ߅涼һ(g)c(din)Σ@ЩɵĎwF;@(g)߅Fĵ;йc(din)ĸ(g)FĂ(c);(c)Ĺc(din)Fc(din);(c)Ĺ߅FĂ(c)
F߅F߅F……քeFFF……
AFֱεһlֱ߅ڵֱD(zhun)S߅D(zhun)γɵɵĎwAF;D(zhun)SAFS;ֱS߅D(zhun)γɵAFĵ;б߅D(zhun)γɵAFĂ(c)
FcAFy(tng)QFw
(3)_(ti)
_(ti)һ(g)ƽڵƽȥFͽ֮gIJֽ_(ti);ԭFĵͽքe_(ti)µϵ;_(ti)ҲЂ(c)(c)c(din)
A_(ti)һ(g)ƽڵƽȥ؈AFͽ֮gIJֽA_(ti);ԭAFĵͽքeA_(ti)µϵ;A_(ti)ҲЂ(c)ĸS
A_(ti)_(ti)y(tng)Q_(ti)w
(4)
AֱڵֱD(zhun)SAD(zhun)һγɵĎwwQ;AĈAĽAİ돽İ돽Aֱֱ
(5)Mw
F_(ti)ȎwMɵď(f)sĎwнMw
2.gwҕD
ҕD^yߏIJͬλ^ͬһ(g)wĿgwĈDΡ
w
(1)ҕDwǰͶӰõͶӰD;
ܷӳwĸ߶ȺL;
(2)(c)ҕDwҷͶӰõͶӰD;
ܷӳwĸ߶Ⱥ͌;
(3)ҕDw·ͶӰõͶӰD;
ܷӳwLȺ͌;
3.gwֱ^D
(1)бy
ٽֱ(bio)ϵ֪ˮƽõƽDȡഹֱOXOYֱ(bio)ϵ;
ڮб(bio)ϵڮֱ^Dļ(ƽ)(yng)O’X’O’Y’ʹ∠X’O’Y’ =45°(135°)_ƽʾˮƽƽ;
ۮ(yng)D֪DƽXSľΣֱ^DЮƽX‘SLȱֲ׃;֪DƽYSľֱ^DЮƽY‘SL׃?yu)ԭһ?
ܲȥoDúҪȥXSYS鮋Dӵo(̓)
(2)ƽͶӰcͶӰ
ƽͶӰͶӰǻƽеͶӰͶӰཻһc(din)
(sh)W(xu)ʽ
タy = ax *+ bx + c
yax ƽ bxټ c
a > 0r(sh)_
a < 0r(sh)_
c = 0r(sh)タ(jng)^ԭc(din)
b = 0r(sh)タQSyS
߀c(din)ʽy(tng) = a(x+h)* + k
ya(x+h)ƽ+k
-hc(din)(bio)x
kc(din)(bio)y
һֵcСֵ
タ(bio)(zhn):y^2=2px
ʾタĽc(din)xS,c(din)(bio)(p/2,0) (zhn)̞x=-p/2
ڒタĽc(din)S,ʹИ(bio)(zhn)y^2=2px y^2=-2px x^2=2py x^2=-2py
Awe=4/3(pi)(r^3)
e=(pi)(r^2)
L=2(pi)r
AĘ(bio)(zhn) (x-a)2+(y-b)2=r2 ע(a,b)LjA(bio)
Aһ㷽 x2+y2+Dx+Ey+F=0 עD2+E2-4F>0
(һ)EALӋ(j)㹫ʽ
EALʽL=2πb+4(a-b)
EALEALԓEA̰SL돽ĈAL(2πb)ıԓEALSL(a)c̰SL(b)IJ
()EAeӋ(j)㹫ʽ
EAeʽ S=πab
EAeEAeڈA(π)ԓEALSL(a)c̰SL(b)ij˷e
ϙEALeʽmȻ]гF(xin)EAT@ɂ(g)ʽͨ^EATƌ(do)׃(sh)wʽ
EAw weӋ(j)㹫ʽEA L돽*̰돽*PAI*
Д(sh)W(xu)ijʽP(gun)£
2016Д(sh)W(xu)T(do)ʽ10-05
Д(sh)W(xu)ĺͲeʽ10-05
Д(sh)W(xu)Ķʽ10-03
߿Ĕ(sh)W(xu)ʽ10-05
2017пĔ(sh)W(xu)ʽȫ10-10
2016߿ĿƳĔ(sh)W(xu)ʽ10-08
߿ĵȲ(sh)йʽw{12-09
һ(sh)W(xu)c(din)ʽȫ10-05