亚洲天堂中文字幕一区二区|亚洲精品无播放器在线播放网站|亚洲精品熟女国产国产老熟女|亚洲欧美在线人成最新按摩

        
        
      • <form id="etzky"></form>
          <td id="etzky"><tr id="etzky"></tr></td>

          Д(sh)W(xu)ijʽ

          r(sh)g2022-10-03 09:25:44 Д(sh)W(xu) ҪͶ

          Д(sh)W(xu)ijʽR

          (do)ZеĔ(sh)W(xu)ʽ(f)ҏ(f)sڸ߿Ќ(sh)W(xu)ʽ\(yn)eҌʽ\(yn)Ҫ`СҿY(ji)˳õĔ(sh)W(xu)ʽ!gӭxHP(gun)֪R(sh)ՈP(gun)עCNFLAW(xu)(x)W(wng)ęĿ!

          Д(sh)W(xu)ijʽR

          x(yu)㷶:

          һһ(sh)W(xu)ʽ

          ɽǺ͹ʽ

          sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA

          cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB

          tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB)

          ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)

          ǹʽ

          tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctga

          cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a

          ǹʽ

          sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)

          cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)

          tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))

          ctg(A/2)=√((1+cosA)/((1-cosA)) ctg(A/2)=-√((1+cosA)/((1-cosA))

          Ͳe

          2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B)

          2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)

          sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2)

          tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosB

          ctgA+ctgBsin(A+B)/sinAsinB -ctgA+ctgBsin(A+B)/sinAsinB

          ijЩ(sh)ǰn(xing)

          1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2 1+3+5+7+9+11+13+15+…+(2n-1)=n2

          2+4+6+8+10+12+14+…+(2n)=n(n+1) 12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6

          13+23+33+43+53+63+…n3=n2(n+1)2/4 1*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3

          Ҷ a/sinA=b/sinB=c/sinC=2R ע R ʾεӈA돽

          Ҷ b2=a2+c2-2accosB עB߅a߅cĊA

          Lʽ l=a*r aLjAĽǵĻȔ(sh)r >0 eʽ s=1/2*l*r

          ˷cʽ a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b(a2+ab+b2)

          Dzʽ |a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b<=>-b≤a≤b

          |a-b|≥|a|-|b| -|a|≤a≤|a|

          һԪη̵Ľ -b+√(b2-4ac)/2a -b-√(b2-4ac)/2a

          cϵ(sh)P(gun)ϵ X1+X2=-b/a X1*X2=c/a עf_(d)

          Єeʽ

          b2-4ac=0 עЃɂ(g)ȵČ(sh)

          b2-4ac>0 עЃɂ(g)ȵČ(sh)

          b2-4ac<0 ע̛]Ќ(sh)йܗ(f)(sh)

          繫ʽ

          (sin^2)x=1-cos2x/2

          (cos^2)x=i=cos2x/2

          fܹʽ

          tan(a/2)=t

          sina=2t/(1+t^2)

          cosa=(1-t^2)/(1+t^2)

          tana=2t/(1-t^2)

          ߶(sh)W(xu)ʽ

          (һ)׺wP(gun)}

          1.F_(ti)ĽY(ji)(gu)

          (1)

          һЃɂ(g)滥ƽУ涼߅ÿɂ(g)߅εĹ߅ƽ@ЩɵĎ׺w;Ѓɂ(g)ƽеĵ棬Q;Ă(c);(c)Ĺ߅Ă(c);(c)cĹc(din)c(din)

          ߅Ρ߅……քe……

          AԾεһ߅ڵֱD(zhun)S߅D(zhun)γɵɵĎ׺wA;D(zhun)SAS;ֱS߅D(zhun)ɵAĂ(c);oՓD(zhun)ʲôλãֱS߅A(c)ĸ

          cAy(tng)Qw;

          (2)F

          Fһһ(g)Ƕ߅涼һ(g)c(din)Σ@ЩɵĎ׺wF;@(g)߅Fĵ;йc(din)ĸ(g)FĂ(c);(c)Ĺc(din)Fc(din);(c)Ĺ߅FĂ(c)

          F߅F߅F……քeFFF……

          AFֱεһlֱ߅ڵֱD(zhun)S߅D(zhun)γɵɵĎ׺wAF;D(zhun)SAFS;ֱS߅D(zhun)γɵAFĵ;б߅D(zhun)γɵAFĂ(c)

          FcAFy(tng)QFw

          (3)_(ti)

          _(ti)һ(g)ƽڵƽȥFͽ֮gIJֽ_(ti);ԭFĵͽքe_(ti)µϵ;_(ti)ҲЂ(c)(c)c(din)

          A_(ti)һ(g)ƽڵƽȥ؈AFͽ֮gIJֽA_(ti);ԭAFĵͽքeA_(ti)µϵ;A_(ti)ҲЂ(c)ĸS

          A_(ti)_(ti)y(tng)Q_(ti)w

          (4)

          ԰AֱڵֱD(zhun)SAD(zhun)һγɵĎ׺wwQ;AĈAĽAİ돽İ돽Aֱֱ

          (5)Mw

          F_(ti)Ȏ׺wMɵď(f)sĎ׺wнMw

          2.g׺wҕD

          ҕD^yߏIJͬλ^ͬһ(g)׺wĿg׺wĈDΡ

          w

          (1)ҕDwǰͶӰõͶӰD;

          ܷӳwĸ߶ȺL;

          (2)(c)ҕDwҷͶӰõͶӰD;

          ܷӳwĸ߶Ⱥ͌;

          (3)ҕDw·ͶӰõͶӰD;

          ܷӳwLȺ͌;

          3.g׺wֱ^D

          (1)бy

          ٽֱ(bio)ϵ֪ˮƽõƽDȡഹֱOXOYֱ(bio)ϵ;

          ڮб(bio)ϵڮֱ^Dļ(ƽ)(yng)O’X’O’Y’ʹ∠X’O’Y’ =45°(135°)_ƽʾˮƽƽ;

          ۮ(yng)D֪DƽXSľΣֱ^DЮƽX‘SLȱֲ׃;֪DƽYSľֱ^DЮƽY‘SL׃?yu)ԭһ?

          ܲȥoDúҪȥXSYS鮋Dӵo(̓)

          (2)ƽͶӰcͶӰ

          ƽͶӰͶӰǻƽеͶӰͶӰཻһc(din)

          (sh)W(xu)ʽ

          タy = ax *+ bx + c

          yax ƽ bxټ c

          a > 0r(sh)_

          a < 0r(sh)_

          c = 0r(sh)タ(jng)^ԭc(din)

          b = 0r(sh)タQSyS

          ߀c(din)ʽy(tng) = a(x+h)* + k

          ya(x+h)ƽ+k

          -hc(din)(bio)x

          kc(din)(bio)y

          һֵcСֵ

          タ(bio)(zhn):y^2=2px

          ʾタĽc(din)xS,c(din)(bio)(p/2,0) (zhn)̞x=-p/2

          ڒタĽc(din)S,ʹИ(bio)(zhn)y^2=2px y^2=-2px x^2=2py x^2=-2py

          Awe=4/3(pi)(r^3)

          e=(pi)(r^2)

          L=2(pi)r

          AĘ(bio)(zhn) (x-a)2+(y-b)2=r2 ע(a,b)LjA(bio)

          Aһ㷽 x2+y2+Dx+Ey+F=0 עD2+E2-4F>0

          (һ)EALӋ(j)㹫ʽ

          EALʽL=2πb+4(a-b)

          EALEALԓEA̰SL돽ĈAL(2πb)ıԓEALSL(a)c̰SL(b)IJ

          ()EAeӋ(j)㹫ʽ

          EAeʽ S=πab

          EAeEAeڈA(π)ԓEALSL(a)c̰SL(b)ij˷e

          ϙEALeʽmȻ]гF(xin)EAT@ɂ(g)ʽͨ^EATƌ(do)׃(sh)wʽ

          EAw weӋ(j)㹫ʽEA L돽*̰돽*PAI*

          Д(sh)W(xu)ijʽP(gun)£

          2016Д(sh)W(xu)T(do)ʽ10-05

          Д(sh)W(xu)ĺͲeʽ10-05

          Д(sh)W(xu)Ķ͹ʽ10-03

          ߿Ĕ(sh)W(xu)ʽ10-05

          2017пĔ(sh)W(xu)ʽȫ10-10

          2016߿ĿƳĔ(sh)W(xu)ʽ10-08

          ߿ĵȲ(sh)йʽw{12-09

          һ(sh)W(xu)c(din)ʽȫ10-05

          2016߿(sh)W(xu)Ǻ(sh)Ĺʽ10-05

          Д(sh)W(xu)׺γĵ֪R(sh)c(din)10-05