- 相關推薦
中考數(shù)學重點公式、定理、推論總結
數(shù)學是研究數(shù)量、結構、變化、空間以及信息等概念的一門學科,從某種角度看屬于形式科學的一種。下面是小編分享的中考數(shù)學重點公式、定理、推論總結,歡迎大家學習!
1 過兩點有且只有一條直線
2 兩點之間線段最短
3 同角或等角的補角相等
4 同角或等角的余角相等
5 過一點有且只有一條直線和已知直線垂直
6 直線外一點與直線上各點連接的所有線段中,垂線段最短
7 平行公理:經過直線外一點,有且只有一條直線與這條直線平行
8 如果兩條直線都和第三條直線平行,這兩條直線也互相平行
9 同位角相等,兩直線平行
10 內錯角相等,兩直線平行
11 同旁內角互補,兩直線平行
12 兩直線平行,同位角相等
13 兩直線平行,內錯角相等
14 兩直線平行,同旁內角互補
15 定理:三角形兩邊的和大于第三邊
16 推論:三角形兩邊的差小于第三邊
17 三角形內角和定理:三角形三個內角的和等于180°
18 推論1:直角三角形的兩個銳角互余
19 推論2:三角形的一個外角等于和它不相鄰的兩個內角的和
20 推論3:三角形的一個外角大于任何一個和它不相鄰的內角
21 全等三角形的對應邊、對應角相等
22 邊角邊公理:有兩邊和它們的夾角對應相等的兩個三角形全等
23 角邊角公理:有兩角和它們的夾邊對應相等的兩個三角形全等
24 推論:有兩角和其中一角的對邊對應相等的兩個三角形全等
25 邊邊邊公理:有三邊對應相等的兩個三角形全等
26 斜邊、直角邊公理有斜邊和一條直角邊對應相等的兩個直角三角形全等
27 定理1:在角的平分線上的點到這個角的兩邊的距離相等
28 定理2:到一個角的兩邊的距離相同的點,在這個角的平分線上
29 角的平分線是到角的兩邊距離相等的所有點的集合
30 等腰三角形的性質定理:等腰三角形的兩個底角相等
31 推論1:等腰三角形頂角的平分線平分底邊并且垂直于底邊
32 等腰三角形的頂角平分線、底邊上的中線和高互相重合
33 推論3:等邊三角形的各角都相等,并且每一個角都等于60°34等腰三角形的判定定理如果一個三角形有兩個角相等,那么這兩個角所對的邊也相等(等角對等邊)
35 推論1:三個角都相等的三角形是等邊三角形
36 推論2:有一個角等于60°的等腰三角形是等邊三角形
37 在直角三角形中,如果一個銳角等于30°那么它所對的直角邊等于斜邊的一半
38 直角三角形斜邊上的中線等于斜邊上的一半
39 定理:線段垂直平分線上的點和這條線段兩個端點的距離相等
40 逆定理:和一條線段兩個端點距離相等的點,在這條線段的垂直平分線上
41 線段的垂直平分線可看作和線段兩端點距離相等的所有點的集合
42 定理1:關于某條直線對稱的兩個圖形是全等形
43 定理2:如果兩個圖形關于某直線對稱,那么對稱軸是對應點連線的垂直平分線
44 定理3:兩個圖形關于某直線對稱,如果它們的對應線段或延長線相交,那么交點在對稱軸上
45 逆定理:如果兩個圖形的對應點連線被同一條直線垂直平分,那么這兩個圖形關于這條直線對稱
46 勾股定理:直角三角形兩直角邊a、b的平方和、等于斜邊c的平方,即a+b=c
47 勾股定理的逆定理:如果三角形的三邊長a、b、c有關系a+b=c,那么這個三角形是直角三角形
48 定理四邊形的內角和等于360°
49 四邊形的外角和等于360°
50 多邊形內角和定理n邊形的內角的和等于(n-2)×180°
51 推論:任意多邊的外角和等于360°
52 平行四邊形性質定理1:平行四邊形的對角相等
53 平行四邊形性質定理2:平行四邊形的對邊相等
54 推論:夾在兩條平行線間的平行線段相等
55 平行四邊形性質定理3:平行四邊形的對角線互相平分
56 平行四邊形判定定理1:兩組對角分別相等的四邊形是平行四邊形
57 平行四邊形判定定理2:兩組對邊分別相等的四邊形是平行四邊形
58 平行四邊形判定定理3:對角線互相平分的四邊形是平行四邊形
59 平行四邊形判定定理4:一組對邊平行相等的四邊形是平行四邊形
60 矩形性質定理1:矩形的四個角都是直角
61 矩形性質定理2:矩形的對角線相等
62 矩形判定定理1:有三個角是直角的四邊形是矩形
63 矩形判定定理2:對角線相等的平行四邊形是矩形
64 菱形性質定理1:菱形的四條邊都相等
65 菱形性質定理2:菱形的對角線互相垂直,并且每一條對角線平分一組對角
66 菱形面積=對角線乘積的一半,即S=(a×b)÷2
67 菱形判定定理1:四邊都相等的四邊形是菱形
68 菱形判定定理2:對角線互相垂直的平行四邊形是菱形
69 正方形性質定理1:正方形的四個角都是直角,四條邊都相等
70 正方形性質定理2:正方形的兩條對角線相等,并且互相垂直平分,每條對角線平分一組對角
71 定理1:關于中心對稱的兩個圖形是全等的
72 定理2:關于中心對稱的兩個圖形,對稱點連線都經過對稱中心,并且被對稱中心平分
73 逆定理:如果兩個圖形的對應點連線都經過某一點,并且被這一點平分,那么這兩個圖形關于這一點對稱
74 等腰梯形性質定理:等腰梯形在同一底上的兩個角相等
75 等腰梯形的兩條對角線相等
【中考數(shù)學重點公式、定理、推論總結】相關文章:
高二數(shù)學空間向量的公式及定理02-21
小升初數(shù)學復習重點公式匯總11-04
高中數(shù)學整理正弦定理和余弦定理的公式(大全)01-05
高中數(shù)學公式定理記憶口訣大全10-12
初中數(shù)學直角三角形定理公式07-28
中考數(shù)學?嫉闹R點:平行定理02-06
小學數(shù)學公式大全:利率問題公式11-24
高中數(shù)學方差公式總結11-18
2017精選關于勾股定理重點知識點11-26