- 相關(guān)推薦
關(guān)于立體幾何中的圖形觀的高中數(shù)學(xué)知識(shí)點(diǎn)
一、作圖
作圖是立體幾何學(xué)習(xí)中的基本功,對(duì)培養(yǎng)空間概念也有積極的意義,而且在作圖時(shí)還要用到許多空間線面的關(guān)系.所以作圖是解決立體幾何問(wèn)題的第一步,作好圖有利于問(wèn)題的解決.
例1 已知正方體
中,點(diǎn)P、E、F分別是棱AB、BC、
的中點(diǎn)(如圖1).作出過(guò)點(diǎn)P、E、F三點(diǎn)的正方體的截面.
分析:作圖是學(xué)生學(xué)習(xí)中的一個(gè)弱點(diǎn),作多面體的截面又是作圖中的難點(diǎn).學(xué)生看到這樣的題目不知所云.有的學(xué)生連結(jié)P、E、F得三角形以為就是所求的截面.其實(shí),作截面就是找兩個(gè)平面的交線,找交線只要找到交線上的兩點(diǎn)即可.觀察所給的條件(如圖2),發(fā)現(xiàn)PE就是一條交線.又因?yàn)槠矫鍭BCD//平面
,由面面平行的性質(zhì)可得,截面和面
的交線一定和PE平行.而F是
的中點(diǎn),故取
的中點(diǎn)Q,則FQ也是一條交線.再延長(zhǎng)FQ和
的延長(zhǎng)線交于一點(diǎn)M,由公理3,點(diǎn)M在平面
和平面
的交線上,連PM交
于點(diǎn)K,則QK和KP又是兩條交線.同理可以找到FR和RE兩條交線(如圖2).因此,六邊形PERFQK就是所求的截面.
二、讀圖
圖形中往往包含著深刻的意義,對(duì)圖形理解的程度影響著我們的正確解題,所以讀懂圖形是解決問(wèn)題的重要一環(huán).
例2 如圖3,在棱長(zhǎng)為a的正方體
中,EF是棱AB上的一條線段,且EF=b
上的定點(diǎn),P在
上滑動(dòng),則四面體PQEF的體積( ).
(A)是變量且有最大值(B)是變量且有最小值(C)是變量無(wú)最大最小值(D)是常量
分析:此題的解決需要我們仔細(xì)分析圖形的特點(diǎn).這個(gè)圖形有很多不確定因素,線段EF的位置不定,點(diǎn)P在滑動(dòng),但在這一系列的變化中是否可以發(fā)現(xiàn)其中的穩(wěn)定因素?求四面體的體積要具備哪些條件?
仔細(xì)觀察圖形,應(yīng)該以哪個(gè)面為底面?觀察
,我們發(fā)現(xiàn)它的形狀位置是要變化的,但是底邊EF是定值,且P到EF的距離也是定值,故它的面積是定值.再發(fā)現(xiàn)點(diǎn)Q到面PEF的距離也是定值.因此,四面體PQEF的體積是定值.我們沒(méi)有一點(diǎn)計(jì)算,對(duì)圖形的分析幫助我們解決了問(wèn)題.
三、用圖
在立體幾何的學(xué)習(xí)中,我們會(huì)遇到許多似是而非的結(jié)論.要證明它我們一時(shí)無(wú)法完成,這時(shí)我們可考慮通過(guò)構(gòu)造一個(gè)特殊的圖形來(lái)推翻結(jié)論,這樣的圖形就是反例圖形.若我們的心中有這樣的反例圖形,那就可以幫助我們迅速作出判斷.
【立體幾何中的圖形觀的高中數(shù)學(xué)知識(shí)點(diǎn)】相關(guān)文章:
高中數(shù)學(xué)函數(shù)知識(shí)點(diǎn)04-26
高中數(shù)學(xué)概率統(tǒng)計(jì)知識(shí)點(diǎn)08-04
高中數(shù)學(xué)函數(shù)知識(shí)點(diǎn)歸納07-25
高中數(shù)學(xué)知識(shí)點(diǎn):函數(shù)10-25
高中數(shù)學(xué)知識(shí)點(diǎn)口訣總結(jié)04-25
高中數(shù)學(xué)函數(shù)知識(shí)點(diǎn)總結(jié)范文07-20
高中數(shù)學(xué):函數(shù)的基本知識(shí)點(diǎn)09-06
高中數(shù)學(xué)函數(shù)的基本知識(shí)點(diǎn)10-17