小學(xué)奧數(shù)30個(gè)知識(shí)點(diǎn)大匯總
1.和差倍問題
和差問題和倍問題差倍問題
已知條件幾個(gè)數(shù)的和與差幾個(gè)數(shù)的和與倍數(shù)幾個(gè)數(shù)的差與倍數(shù)
公式適用范圍已知兩個(gè)數(shù)的和,差,倍數(shù)關(guān)系
公式①(和-差)÷2=較小數(shù)
較小數(shù)+差=較大數(shù)小學(xué)奧數(shù)很簡(jiǎn)單,就這30個(gè)知識(shí)點(diǎn)
和-較小數(shù)=較大數(shù)
、(和+差)÷2=較大數(shù)
較大數(shù)-差=較小數(shù)
和-較大數(shù)=較小數(shù)
和÷(倍數(shù)+1)=小數(shù)
小數(shù)×倍數(shù)=大數(shù)
和-小數(shù)=大數(shù)
差÷(倍數(shù)-1)=小數(shù)
小數(shù)×倍數(shù)=大數(shù)
小數(shù)+差=大數(shù)
關(guān)鍵問題求出同一條件下的
和與差和與倍數(shù)差與倍數(shù)
2.年齡問題的三個(gè)基本特征:
、賰蓚(gè)人的年齡差是不變的;
、趦蓚(gè)人的年齡是同時(shí)增加或者同時(shí)減少的;
、蹆蓚(gè)人的年齡的倍數(shù)是發(fā)生變化的;
3.歸一問題的基本特點(diǎn):?jiǎn)栴}中有一個(gè)不變的量,一般是那個(gè)“單一量”,題目一般用“照這樣的速度”……等詞語來表示。
關(guān)鍵問題:根據(jù)題目中的條件確定并求出單一量;
4.植樹問題
基本類型在直線或者不封閉的曲線上植樹,兩端都植樹在直線或者不封閉的曲線上植樹,兩端都不植樹在直線或者不封閉的`曲線上植樹,只有一端植樹封閉曲線上植樹
基本公式棵數(shù)=段數(shù)+1
棵距×段數(shù)=總長(zhǎng)棵數(shù)=段數(shù)-1
棵距×段數(shù)=總長(zhǎng)棵數(shù)=段數(shù)
棵距×段數(shù)=總長(zhǎng)
關(guān)鍵問題確定所屬類型,從而確定棵數(shù)與段數(shù)的關(guān)系
5.雞兔同籠問題
基本概念:雞兔同籠問題又稱為置換問題、假設(shè)問題,就是把假設(shè)錯(cuò)的那部分置換出來;
基本思路:
、偌僭O(shè),即假設(shè)某種現(xiàn)象存在(甲和乙一樣或者乙和甲一樣):
、诩僭O(shè)后,發(fā)生了和題目條件不同的差,找出這個(gè)差是多少;
③每個(gè)事物造成的差是固定的,從而找出出現(xiàn)這個(gè)差的原因;
④再根據(jù)這兩個(gè)差作適當(dāng)?shù)恼{(diào)整,消去出現(xiàn)的差。
基本公式:
①把所有雞假設(shè)成兔子:雞數(shù)=(兔腳數(shù)×總頭數(shù)-總腳數(shù))÷(兔腳數(shù)-雞腳數(shù))
、诎阉型米蛹僭O(shè)成雞:兔數(shù)=(總腳數(shù)一雞腳數(shù)×總頭數(shù))÷(兔腳數(shù)一雞腳數(shù))
關(guān)鍵問題:找出總量的差與單位量的差。
【小學(xué)奧數(shù)30個(gè)知識(shí)點(diǎn)大匯總】相關(guān)文章:
小學(xué)奧數(shù)知識(shí)點(diǎn)12-05
小學(xué)奧數(shù)知識(shí)點(diǎn)梳理11-28
小學(xué)參考的奧數(shù)知識(shí)點(diǎn)12-06
高頻小學(xué)奧數(shù)知識(shí)點(diǎn)整理11-30
奧數(shù)知識(shí)點(diǎn):數(shù)的整除12-06
小學(xué)奧數(shù)?嫉闹R(shí)點(diǎn)12-05
小學(xué)奧數(shù)題03-27
奧數(shù)知識(shí)點(diǎn):余數(shù)問題12-07