- 相關(guān)推薦
二次函數(shù)的圖像和性質(zhì)數(shù)學(xué)教案
學(xué)習(xí)目標(biāo):
1、能解釋二次函數(shù) 的圖像的位置關(guān)系;
2、體會(huì)本節(jié)中圖形的變化與 圖形上的點(diǎn)的坐標(biāo)變化之間的關(guān)系(轉(zhuǎn)化),感受形數(shù) 結(jié)合的數(shù)學(xué)思想等。
學(xué)習(xí)重點(diǎn)與難點(diǎn):
對二次函數(shù) 的圖像的位置關(guān)系解釋和研究問題的數(shù)學(xué)方法的感受是學(xué)習(xí)重點(diǎn);難點(diǎn)是對數(shù)學(xué)問題研究問題方法的感受和領(lǐng)悟。
學(xué)習(xí)過程:
一、知識(shí)準(zhǔn)備
本節(jié)課的學(xué)習(xí)的內(nèi)容是課本P12-P14的內(nèi)容,內(nèi)容較長,課本上問題較多,需要你操作、觀察、思考和概括,請你注意:學(xué)習(xí)時(shí)要圈、點(diǎn)、勾、畫,隨時(shí)記錄甚至批注課本,想想那個(gè)人是如何研究出來的。你有何新的發(fā)現(xiàn)呢?
二、學(xué)習(xí)內(nèi)容
1.思考:二次函數(shù) 的圖象是個(gè)什么圖形?是拋物線嗎?為什么?(請你仔細(xì)看課本P12-P13,作出合理的解釋)
x -3 -2 -1
0 1 2 3
類似的:二次函數(shù) 的圖象與函數(shù) 的圖象有什么關(guān)系?
它的對稱軸、頂點(diǎn)、最值、增減性如何?
2.想一想:二次函數(shù) 的圖象是拋物線嗎?如果結(jié)合下表和看課本P13-P14你的解釋是什么?
x
-8 -7 -6 -3 -2 -1 0 1 2 3 4 5 6
類似的:二次函數(shù) 的圖象與二次函數(shù) 的圖象有什么關(guān)系 ?它的對稱軸、頂點(diǎn)呢?它的對稱軸、頂點(diǎn)、最值、增減性如何呢
三、知識(shí)梳理
1、二次函數(shù) 圖像的形狀,位置的關(guān)系是:
2、它們的性質(zhì)是:
四、達(dá)標(biāo)測試
⒈將拋物線y=4x2向上平移3個(gè)單位,所得的拋物線的函數(shù)式是 。
將拋物線y=-5x2+1向下平移5個(gè)單位,所得的拋物線的函數(shù)式是 。
將函數(shù)y=-3x2+4的圖象向 平移 個(gè)單位可得y=-3x2的圖象;
將y=2x2-7的圖象向 平移 個(gè)單位得到可由 y=2x2的圖象。
將y=x2-7的圖象向 平移 個(gè)單位 可得到 y=x2+2的圖象。
2.拋物線y=-3(x-1)2可以看作是拋物線y=-3x2沿x 軸 平移了 個(gè)單位;
拋物線y=-3(x+1)2可以看作是拋物線y=-3x2沿x軸 平移了 個(gè)單位.
拋物線y=-3(x-1)2的頂點(diǎn)是 ;對稱軸 是 ;
拋物線y=-3(x+1)2的頂點(diǎn)是 ;對稱軸是 .
3.拋物線y=-3(x-1)2在對稱軸(x=1)的左側(cè),即當(dāng)x 時(shí), y隨著x的增大而 ; 在對稱軸(x=1)右側(cè),即當(dāng)x 時(shí), y隨著x的增大而 .當(dāng)x= 時(shí),函數(shù)y有最 值,最 值是 ;
二次 函數(shù)y=2x2+5的圖像是 ,開口 ,對稱軸是 ,當(dāng)x= 時(shí),y有最 值,是 。
4.將函數(shù)y=3 (x-4)2的圖象沿x軸對折后得到的函數(shù)解析式是 ;
將函數(shù)y=3(x-4)2的 圖象沿y軸對折后得到的函數(shù)解析式是 ;
5.把拋物線y=a(x-4)2向左平移6個(gè)單位后得到拋物線y=- 3(x-h)2的圖象,則a= ,h= .
函數(shù)y=(3x+6)2的圖象是由函數(shù) 的圖象向左平移5個(gè)單位得到的,其圖象開口向 ,對稱軸是 ,頂點(diǎn)坐標(biāo)是 ,當(dāng)x 時(shí),y隨x的增大而增大,當(dāng)x= 時(shí),y有最 值是 .
6.已知二次函數(shù)y=ax2+c ,當(dāng)x取x1,x2(x1x2), x1,x2分別是A,B兩點(diǎn)的橫坐標(biāo))時(shí),函數(shù)值相等,
則當(dāng)x取x1+x2時(shí),函數(shù)值為 ( )
A. a+c B. a-c C. c D. c
7.已知二次函數(shù)y=a(x-h)2, 當(dāng)x=2時(shí)有最大值,且此函數(shù)的圖象經(jīng)過點(diǎn)(1,-3),求此函數(shù)的解析式,并指出當(dāng)x為何值時(shí),y隨x的增大而增大?
【二次函數(shù)的圖像和性質(zhì)數(shù)學(xué)教案】相關(guān)文章:
關(guān)于二次函數(shù)的圖像與性質(zhì)的數(shù)學(xué)教案(精選9篇)01-02
《二次函數(shù)》數(shù)學(xué)教案(精選10篇)12-02
《二次函數(shù)與一元二次方程》數(shù)學(xué)教案07-20
高中數(shù)學(xué)冪函數(shù)的性質(zhì)總結(jié)09-19
《函數(shù)的圖象》數(shù)學(xué)教案10-16
高中數(shù)學(xué)冪函數(shù)的性質(zhì)知識(shí)點(diǎn)10-13
初二數(shù)學(xué)常考的知識(shí)點(diǎn):函數(shù)的性質(zhì)04-27