初中數(shù)學(xué)教案模板
引導(dǎo)語:課堂活動的開展離不開教案,而關(guān)于初中數(shù)學(xué)教案哪里有呢?接下來是小編為你帶來收集整理的文章,歡迎閱讀!
教學(xué)目標(biāo):
1、使學(xué)生學(xué)會較熟煉地運用切線的判定方法和切線的性質(zhì)證明問題.
2、掌握運用切線的性質(zhì)和切線的判定的有關(guān)問題中輔助線引法的基本規(guī)律.
教學(xué)重點:
使學(xué)生準(zhǔn)確、熟煉、靈活地運用切線的判定方法及其性質(zhì).教學(xué)難點:學(xué)生對題目不能準(zhǔn)確地進(jìn)行論證.證題中常會出現(xiàn)不知如何入手,不知往哪個方向證的情形.
教學(xué)過程:
一、新課引入:
我們已經(jīng)系統(tǒng)地學(xué)習(xí)了切線的判定方法和切線的性質(zhì),現(xiàn)在我們來利用這些知識證明有關(guān)幾何問題.
二、新課講解:
實際上在幾何證明題中,我們更多地將切線的判定定理和性質(zhì)定理應(yīng)用在具體的問題中,而一道幾何題的分析過程,是證題中的最關(guān)鍵步驟.p.109例3如圖7-58,已知:ab是⊙o的直徑,bc是⊙o的切線,切點為b,oc平行于弦ad.求證:dc是⊙o的切線.
分析:欲證cd是⊙o的切線,d是⊙o的弦ad的一個端點當(dāng)然在⊙o上,屬于公共點已給定,而證直線是圓的切線的情形.所以輔助線應(yīng)該是連結(jié)oc.只要證od⊥cd即可.亦就是證∠odc=90°,所以只要證∠odc=∠obc即可,觀察圖形,兩個角分別位于△odc和△obc中,如果兩個三角形相似或全等都可以產(chǎn)生對應(yīng)角相等的結(jié)果.而圖形中已存在明顯的條件od=ob,oc=oc,只要證∠3=∠4,便可造成兩個三角形全等.
∠3如何等于∠4呢?題中還有一個已知條件ad∥oc,平行的位置關(guān)系,可以造成角的相等關(guān)系,從而導(dǎo)致∠3=∠4.命題得證.證明:連結(jié)od.教師向?qū)W生解釋書上的證題格式屬于推出法和因為所以法的.聯(lián)用,以后證題中同學(xué)可以借鑒.p.110例4如圖7-59,在以o為圓心的兩個同心圓中,大圓的弦ab和cd相等,且ab與小圓相切于點e求證:cd與小圓相切.
分析:欲證cd與小⊙o相切,但讀題后發(fā)現(xiàn)直線cd與小⊙o并未已知公共點.這個時候我們必須從圓心o向cd作垂線,設(shè)垂足為f.此時f點在直線cd上,如果我們能證得of等于小⊙o的半徑,則說明點f必在小⊙o上,即可根據(jù)切線的判定定理認(rèn)定cd與小⊙o相切.題目中已告訴我們ab切小⊙o于e,連結(jié)oe,便得到小⊙o的一條半徑,再根據(jù)大⊙o中弦相等則弦心距也相等,則可得到of=oe.證明:連結(jié)oe,過o作of⊥cd,重足為f.
請同學(xué)們注意本題中證一條直線是圓的切線時,這種證明途徑是由直線與圓的公共點來給定所決定的.
練習(xí)一
p.111,1.已知:oc平分∠aob,d是oc上任意一點,⊙d與oa相切于點e.求證:ob與⊙d相切.分析:審題后發(fā)現(xiàn)欲證的ob與⊙d相切,屬于ob與⊙d無公共點的情況.這時應(yīng)從圓心d向⊙b作垂線,垂足為f,然后證垂線段df等于⊙b的一條半徑,而題目中已給oa與⊙d切于點e,只要連結(jié)de.再根據(jù)角平分線的性質(zhì),問題便得到解決.證明:連結(jié)de,作df⊥ob,重足為f.p.111中2.已知如圖7-61,△abc為等腰三角形,o是底邊bc的中點,⊙o與腰ab相切于點d.求證:ac與⊙o相切.
分析:欲證ac與⊙o相切,同第1題一樣,同屬于直線與圓的公共點未給定情況.輔助線的方法同第1題,證法類同.只不過要針對本題特點還要連結(jié)oa.從等腰三角形的”三線合一”的性質(zhì)出發(fā),證得oa平分∠bac,然后再根據(jù)角平分線的性質(zhì),使問題得到證明.證明:連結(jié)od、oa,作oe⊥ac,垂足為e.同學(xué)們想一想,在證明oe=od時,還可以怎樣證?
(答案)可通過“角、角、邊”證rt△odb≌rt△oec.
三、新課講解
。簽榕囵B(yǎng)學(xué)生閱讀教材的習(xí)慣讓學(xué)生閱讀109頁到110頁.從中總結(jié)出本課的主要內(nèi)容:
1.在證題中熟練應(yīng)用切線的判定方法和切線的性質(zhì).
2.在證明一條直線是圓的切線時,只能遇到兩種情形之一,針對不同的情形,選擇恰當(dāng)?shù)淖C明途徑,務(wù)必使同學(xué)們真正掌握.
(1)公共點已給定.做法是“連結(jié)”半徑,讓半徑“垂直”于直線.
(2)公共點未給定.做法是從圓心向直線“作垂線”,證“垂線段等于半徑”.
四、布置作業(yè)
1.教材p.116中8、9.2.教材p.117中2.
【初中數(shù)學(xué)教案】相關(guān)文章:
初中數(shù)學(xué)教案01-24
人教版初中數(shù)學(xué)教案07-07
初中數(shù)學(xué)教案范例07-11
初中數(shù)學(xué)教案檢查總結(jié)07-07
青島版初中數(shù)學(xué)教案07-07
初中數(shù)學(xué)教案移項教案07-11