亚洲天堂中文字幕一区二区|亚洲精品无播放器在线播放网站|亚洲精品熟女国产国产老熟女|亚洲欧美在线人成最新按摩

        
        
      • <form id="etzky"></form>
          <td id="etzky"><tr id="etzky"></tr></td>

          數(shù)學(xué)學(xué)習(xí)方法:勾股定理

          時(shí)間:2021-03-07 14:44:49 學(xué)習(xí)方法 我要投稿

          數(shù)學(xué)學(xué)習(xí)方法:勾股定理

            一、勾股數(shù)的相關(guān)介紹

          數(shù)學(xué)學(xué)習(xí)方法:勾股定理

           、儆^察3,4,5;5,12,13;7,24,25;…發(fā)現(xiàn)這些勾股數(shù)都是奇數(shù),且從3起就沒有間斷過。計(jì)算0.5(9-1),0.5(9+1)與0.5(25-1),0.5(25+1),并根據(jù)你發(fā)現(xiàn)的規(guī)律寫出分別能表示7,24,25的股和弦的算式。

           、诟鶕(jù)①的規(guī)律,用n的代數(shù)式來表示所有這些勾股數(shù)的勾、股、弦,合情猜想他們之間的兩種相等關(guān)系,并對(duì)其中一種猜想加以說明。

            ③繼續(xù)觀察4,3,5;6,8,10;8,15,17;…可以發(fā)現(xiàn)各組的.第一個(gè)數(shù)都是偶數(shù),且從4起也沒有間斷過,運(yùn)用上述類似的探索方法,之間用m的代數(shù)式來表示它們的股合弦。 ]在一個(gè)三角形中,兩條邊的平方和等于另一條邊的平方,那么這個(gè)三角形就是直角三角形。

            二、勾股定理的命題方向

            命題1:以已知線段為邊,求作一等邊三角形。

            命題2:求以已知點(diǎn)為端點(diǎn),作一線段與已知線段相等。

            命題3:已知大小兩線段,求在大線段上截取一線段與小線段相等。

            命題4:兩三角形的兩邊及其夾角對(duì)應(yīng)相等,則這兩個(gè)三角形全等。

            命題5:等腰三角形兩底角相等。

            三、經(jīng)典方法明細(xì)

            方法一:

            作四個(gè)全等的直角三角形,設(shè)它們的兩條直角邊長分別為a、b ,斜邊長為c. 把它們拼成如圖那樣的一個(gè)多邊形,使D、E、F在一條直線上. 過C作AC的延長線交DF于點(diǎn)P.

            ∵ D、E、F在一條直線上, 且RtΔGEF ≌ RtΔEBD,

            ∴ ∠EGF = ∠BED,

            ∵ ∠EGF + ∠GEF = 90°,

            ∴ ∠BED + ∠GEF = 90°,

            ∴ ∠BEG =180°―90°= 90°

            又∵ AB = BE = EG = GA = c,

            ∴ ABEG是一個(gè)邊長為c的正方形.

            ∴ ∠ABC + ∠CBE = 90°

            ∵ RtΔABC ≌ RtΔEBD,

            ∴ ∠ABC = ∠EBD.

            ∴ ∠EBD + ∠CBE = 90°

            即 ∠CBD= 90°

            又∵ ∠BDE = 90°,∠BCP = 90°,

            BC = BD = a.

            ∴ BDPC是一個(gè)邊長為a的正方形.

            同理,HPFG是一個(gè)邊長為b的正方形.

            設(shè)多邊形GHCBE的面積為S,則

            ,

            ∴ BDPC的面積也為S,HPFG的面積也為S由此可推出:a^2+b^2=c^2

            方法二

            作兩個(gè)全等的直角三角形,設(shè)它們的兩條直角邊長分別為a、b(b>a) ,斜邊長為c. 再做一個(gè)邊長為c的正方形. 把它們拼成如圖所示的多邊形.

            分別以CF,AE為邊長做正方形FCJI和AEIG,

            ∵EF=DF-DE=b-a,EI=b,

            ∴FI=a,

            ∴G,I,J在同一直線上,

            ∵CJ=CF=a,CB=CD=c,

            ∠CJB = ∠CFD = 90°,

            ∴RtΔCJB ≌ RtΔCFD ,

            同理,RtΔABG ≌ RtΔADE,

            ∴RtΔCJB ≌ RtΔCFD ≌ RtΔABG ≌ RtΔADE

            ∴∠ABG = ∠BCJ,

            ∵∠BCJ +∠CBJ= 90°,

            ∴∠ABG +∠CBJ= 90°,

            ∵∠ABC= 90°,

            ∴G,B,I,J在同一直線上,

            所以a^2+b^2=c^2

          【數(shù)學(xué)學(xué)習(xí)方法:勾股定理】相關(guān)文章:

          初中數(shù)學(xué):“勾股定理”必考點(diǎn)12-11

          小升初數(shù)學(xué):學(xué)習(xí)方法05-31

          數(shù)學(xué)高效學(xué)習(xí)方法12-27

          初二數(shù)學(xué)同步練習(xí):勾股定理練習(xí)題精選12-05

          小升初奧數(shù)學(xué)習(xí)方法05-31

          初中數(shù)學(xué)實(shí)用學(xué)習(xí)方法05-27

          數(shù)學(xué)高效學(xué)習(xí)方法指導(dǎo)05-20

          數(shù)學(xué)好的學(xué)習(xí)方法05-20

          數(shù)學(xué)的學(xué)習(xí)方法整理05-17