亚洲天堂中文字幕一区二区|亚洲精品无播放器在线播放网站|亚洲精品熟女国产国产老熟女|亚洲欧美在线人成最新按摩

        
        
      • <form id="etzky"></form>
          <td id="etzky"><tr id="etzky"></tr></td>

          解析幾何中求參數(shù)取值范圍的方法

          時(shí)間:2021-01-22 19:39:17 高中數(shù)學(xué) 我要投稿

          解析幾何中求參數(shù)取值范圍的方法

            近幾年來(lái),與解析幾何有關(guān)的參數(shù)取值范圍的問(wèn)題經(jīng)常出現(xiàn)在高考考試中,這類問(wèn)題不僅涉及知識(shí)面廣,綜合性大,應(yīng)用性強(qiáng),而且情景新穎,能很好地考查學(xué)生的創(chuàng)新能力和潛在的數(shù)學(xué)素質(zhì),是歷年來(lái)高考命題的熱點(diǎn)和重點(diǎn)。下面就是小編跟大家分享解析幾何中求參數(shù)取值范圍的方法,大家一定要在平時(shí)的練習(xí)中不斷積累!

            一、利用曲線方程中變量的范圍構(gòu)造不等式

            曲線上的點(diǎn)的坐標(biāo)往往有一定的變化范圍,如橢圓 x2a2 + y2b2 = 1上的點(diǎn)P(x,y)滿足-a≤x≤a,-b≤y≤b,因而可利用這些范圍來(lái)構(gòu)造不等式求解,另外,也常出現(xiàn)題中有多個(gè)變量,變量之間有一定的關(guān)系,往往需要將要求的參數(shù)去表示已知的變量或建立起適當(dāng)?shù)牟坏仁?再來(lái)求解.這是解決變量取值范圍常見(jiàn)的策略和方法.

            例1 已知橢圓 x2a2 + y2b2 = 1 (a>b>0), A,B是橢圓上的兩點(diǎn),線段AB的垂直平分線與x軸相交于點(diǎn)P(x0 , 0)

            求證:-a2-b2a ≤ x0 ≤ a2-b2a

            分析:先求線段AB的垂直平分線方程,求出x0與A,B橫坐標(biāo)的關(guān)系,再利用橢圓上的點(diǎn)A,B滿足的范圍求解.

            解: 設(shè)A,B坐標(biāo)分別為(x1,y1) ,(x2,y2),(x1≠x2)代入橢圓方程,作差得: y2-y1x2-x1 =-b2a2 x2+x1 y2+y1

            又∵線段AB的垂直平分線方程為

            y- y1+y22 =- x2-x1 y2-y1 (x-x1+x22 )

            令y=0得 x0=x1+x22 a2-b2a2

            又∵A,B是橢圓x2a2 + y2b2 = 1 上的點(diǎn)

            ∴-a≤x1≤a, -a≤x2≤a, x1≠x2 以及-a≤x1+x22 ≤a

            ∴ -a2-b2a ≤ x0 ≤ a2-b2a

            例2 如圖,已知△OFQ的.面積為S,且OFFQ=1,若 12 < S<2 ,求向量OF與FQ的夾角θ的取值范圍.

            分析:須通過(guò)題中條件建立夾角θ與變量S的關(guān)系,利用S的范圍解題.

            解: 依題意有

            ∴tanθ=2S

            ∵12 < S<2 ∴1< tanθ<4

            又∵0≤θ≤π

            ∴π4 <θ< p>

            例3對(duì)于拋物線y2=4x上任一點(diǎn)Q,點(diǎn)P(a,0)都滿足|PQ|≥|a|,則a的取值范圍是 ( )

            A a<0 B a≤2 C 0≤a≤2 D 0<2< p>

            分析:直接設(shè)Q點(diǎn)坐標(biāo),利用題中不等式|PQ|≥|a| 求解.

            解: 設(shè)Q( y024 ,y0) 由|PQ| ≥a

            得y02+( y024 -a)2≥a2 即y02(y02+16-8a) ≥0

            ∵y02≥0 ∴(y02+16-8a) ≥0即a≤2+ y028 恒成立

            又∵ y02≥0

            而 2+ y028 最小值為2 ∴a≤2 選( B )

            二、利用判別式構(gòu)造不等式

            在解析幾何中,直線與曲線之間的位置關(guān)系,可以轉(zhuǎn)化為一元二次方程的解的問(wèn)題,因此可利用判別式來(lái)構(gòu)造不等式求解.

            例4設(shè)拋物線y2 = 8x的準(zhǔn)線與x軸交于點(diǎn)Q,若過(guò)點(diǎn)Q的直線L與拋物線有公共點(diǎn),則直線L的斜率取值范圍是 ( )

            A [-12 ,12 ] B [-2,2] C [-1,1] D [-4,4]

            分析:由于直線l與拋物線有公共點(diǎn),等價(jià)于一元二次方程有解,則判別式△≥0

            解:依題意知Q坐標(biāo)為(-2,0) , 則直線L的方程為y = k(x+2)

            由 得 k2x2+(4k2-8)x+4k2 = 0

            ∵直線L與拋物線有公共點(diǎn)

            ∴△≥0 即k2≤1 解得-1≤k≤1 故選 (C)

            例5 直線L: y = kx+1與雙曲線C: 2x2-y2 = 1的右支交于不同的兩點(diǎn)A、B,求實(shí)數(shù)k的取值范圍.

            分析:利用直線方程和雙曲線方程得到x的一元二次方程,由于直線與右支交于不同兩點(diǎn),則△>0,同時(shí),還需考慮右支上點(diǎn)的橫坐標(biāo)的取值范圍來(lái)建立關(guān)于k的不等式.

            解:由 得 (k2-2)x2 +2kx+2 = 0

            ∵直線與雙曲線的右支交于不同兩點(diǎn),則

            解得 -2<-2< p>

            三、利用點(diǎn)與圓錐曲線的位置關(guān)系構(gòu)造不等式

            曲線把坐標(biāo)平面分成三個(gè)區(qū)域,若點(diǎn)P(x0,y0)與曲線方程f(x,y)=0關(guān)系:若P在曲線上,則f(x0,y0)=0;若P在曲線內(nèi),則f(x0,y0)<0;若p在曲線外,則f(x0,y0)>0;可見(jiàn),平面內(nèi)曲線與點(diǎn)均滿足一定的關(guān)系。故可用這些關(guān)系來(lái)構(gòu)造不等式解題.

            例6已知橢圓2x2 + y2 = a2 (a>0)與連結(jié)兩點(diǎn)A(1,2)、B(2,3)的線段沒(méi)有公共點(diǎn),求實(shí)數(shù)a的取值范圍.

            分析:結(jié)合點(diǎn)A,B及橢圓位置,可得當(dāng)AB兩點(diǎn)同時(shí)在橢圓內(nèi)或同時(shí)在橢圓外時(shí)符合條件.

            解:依題意可知,當(dāng)A、B同時(shí)在橢圓內(nèi)或橢圓外時(shí)滿足條件。

            當(dāng)A、B同時(shí)在橢圓內(nèi),則

            解得a >17

            當(dāng)A、B同時(shí)在橢圓外,則

            解得0<6< p>

            綜上所述,解得0<6 a="">17

            又∵當(dāng)橢圓中心(m,0)在直線y=kx+3上,

            ∴0 = km+3 ,即m = - 3k ,

            ∴- 3k >2,解得-32<0< p>

            上面是處理解析幾何中求參數(shù)取值范圍問(wèn)題的幾種思路和求法,希望通過(guò)以上的介紹,能讓同學(xué)們了解這類問(wèn)題的常用求法,并能認(rèn)真體會(huì)、理解掌握,在以后的學(xué)習(xí)過(guò)程中能夠靈活運(yùn)用。

          【解析幾何中求參數(shù)取值范圍的方法】相關(guān)文章:

          高等數(shù)學(xué)中幾種求極限的方法03-08

          數(shù)學(xué)分析中求極限的幾種重要方法09-16

          在競(jìng)爭(zhēng)中求平等作文11-10

          關(guān)于高中數(shù)學(xué)解題方法之?dāng)?shù)學(xué)參數(shù)法10-11

          2017年職稱英語(yǔ)考試擴(kuò)大閱讀范圍的方法02-07

          常見(jiàn)的硬盤參數(shù)有哪些01-30

          固態(tài)硬盤參數(shù)介紹01-29

          聲樂(lè)中練習(xí)低音的方法08-21

          合唱中的練聲方法09-12