- 相關(guān)推薦
高中數(shù)學(xué)九大解題技巧
解題是深化知識(shí)、發(fā)展智力、提高能力的重要手段。下面小編給你分享高中數(shù)學(xué)九大解題技巧,歡迎閱讀。
高中數(shù)學(xué)九大解題技巧
1、配法
通過(guò)把一個(gè)解析式利用恒等變形的方法,把其中的某些項(xiàng)配成一個(gè)或幾個(gè)多項(xiàng)式正整數(shù)次冪的和形式解決數(shù)學(xué)問(wèn)題的方法,叫配方法。配方法用的最多的是配成完全平方式,它是數(shù)學(xué)中一種重要的恒等變形的方法,它的應(yīng)用十分非常廣泛,在因式分解、化簡(jiǎn)根式、解方程、證明等式和不等式、求函數(shù)的極值和解析式等方面都經(jīng)常用到它。
2、因式分解法
因式分解,就是把一個(gè)多項(xiàng)式化成幾個(gè)整式乘積的形式,是恒等變形的基礎(chǔ),它作為數(shù)學(xué)的一個(gè)有力工具、一種數(shù)學(xué)方法在代數(shù)、幾何、三角等的解題中起著重要的作用。因式分解的方法有許多,除中學(xué)課本上介紹的提取公因式法、公式法、分組分解法、十字相乘法等外,還有如利用拆項(xiàng)添項(xiàng)、求根分解、換元、待定系數(shù)等等。
3、換元法
換元法是數(shù)學(xué)中一個(gè)非常重要而且應(yīng)用十分廣泛的解題方法。通常把未知數(shù)或變數(shù)稱為元,所謂換元法,就是在一個(gè)比較復(fù)雜的數(shù)學(xué)式子中,用新的變?cè)ゴ嬖降囊粋(gè)部分或改造原來(lái)的式子,使它簡(jiǎn)化,使問(wèn)題易于解決。
4、判別式法與韋達(dá)定理
一元二次方程ax2bxc=0(a、b、c屬于R,a≠0)根的判別,△=b2-4ac,不僅用來(lái)判定根的性質(zhì),而且作為一種解題方法,在代數(shù)式變形,解方程(組),解不等式,研究函數(shù)乃至幾何、三角運(yùn)算中都有非常廣泛的應(yīng)用。
韋達(dá)定理除了已知一元二次方程的一個(gè)根,求另一根;已知兩個(gè)數(shù)的和與積,求這兩個(gè)數(shù)等簡(jiǎn)單應(yīng)用外,還可以求根的對(duì)稱函數(shù),計(jì)論二次方程根的符號(hào),解對(duì)稱方程組,以及解一些有關(guān)二次曲線的問(wèn)題等,都有非常廣泛的應(yīng)用。
5、待定系數(shù)法
在解數(shù)學(xué)問(wèn)題時(shí),若先判斷所求的結(jié)果具有某種確定的形式,其中含有某些待定的系數(shù),而后根據(jù)題設(shè)條件列出關(guān)于待定系數(shù)的等式,最后解出這些待定系數(shù)的值或找到這些待定系數(shù)間的某種關(guān)系,從而解答數(shù)學(xué)問(wèn)題,這種解題方法稱為待定系數(shù)法。它是中學(xué)數(shù)學(xué)中常用的方法之一。
6、構(gòu)造法
在解題時(shí),我們常常會(huì)采用這樣的方法,通過(guò)對(duì)條件和結(jié)論的分析,構(gòu)造輔助元素,它可以是一個(gè)圖形、一個(gè)方程(組)、一個(gè)等式、一個(gè)函數(shù)、一個(gè)等價(jià)命題等,架起一座連接條件和結(jié)論的橋梁,從而使問(wèn)題得以解決,這種解題的數(shù)學(xué)方法,我們稱為構(gòu)造法。運(yùn)用構(gòu)造法解題,可以使代數(shù)、三角、幾何等各種數(shù)學(xué)知識(shí)互相滲透,有利于問(wèn)題的解決。
7、面積法
平面幾何中講的面積公式以及由面積公式推出的與面積計(jì)算有關(guān)的性質(zhì)定理,不僅可用于計(jì)算面積,而且用它來(lái)證明平面幾何題有時(shí)會(huì)收到事半功倍的效果。運(yùn)用面積關(guān)系來(lái)證明或計(jì)算平面幾何題的方法,稱為面積方法,它是幾何中的一種常用方法。
用歸納法或分析法證明平面幾何題,其困難在添置輔助線。面積法的特點(diǎn)是把已知和未知各量用面積公式聯(lián)系起來(lái),通過(guò)運(yùn)算達(dá)到求證的結(jié)果。所以用面積法來(lái)解幾何題,幾何元素之間關(guān)系變成數(shù)量之間的關(guān)系,只需要計(jì)算,有時(shí)可以不添置補(bǔ)助線,即使需要添置輔助線,也很容易考慮到。
8、幾何變換法
在數(shù)學(xué)問(wèn)題的研究中,常常運(yùn)用變換法,把復(fù)雜性問(wèn)題轉(zhuǎn)化為簡(jiǎn)單性的問(wèn)題而得到解決。所謂變換是一個(gè)集合的任一元素到同一集合的元素的一個(gè)一一映射。中學(xué)數(shù)學(xué)中所涉及的變換主要是初等變換。有一些看來(lái)很難甚至于無(wú)法下手的習(xí)題,可以借助幾何變換法,化繁為簡(jiǎn),化難為易。另一方面,也可將變換的觀點(diǎn)滲透到中學(xué)數(shù)學(xué)教學(xué)中。將圖形從相等靜止條件下的研究和運(yùn)動(dòng)中的研究結(jié)合起來(lái),有利于對(duì)圖形本質(zhì)的認(rèn)識(shí)。
幾何變換包括:(1)平移;(2)旋轉(zhuǎn);(3)對(duì)稱。
9、反證法
反證法是一種間接證法,它是先提出一個(gè)與命題的結(jié)論相反的假設(shè),然后,從這個(gè)假設(shè)出發(fā),經(jīng)過(guò)正確的推理,導(dǎo)致矛盾,從而否定相反的假設(shè),達(dá)到肯定原命題正確的一種方法。反證法可以分為歸謬反證法(結(jié)論的反面只有一種)與窮舉反證法(結(jié)論的反面不只一種)。用反證法證明一個(gè)命題的步驟,大體上分為:(1)反設(shè);(2)歸謬;(3)結(jié)論。
反設(shè)是反證法的基礎(chǔ),為了正確地作出反設(shè),掌握一些常用的互為否定的表述形式是有必要的,例如:是/不是;存在/不存在;平行于/不平行于;垂直于/不垂直于;等于/不等于;大(小)于/不大(小)于;都是/不都是;至少有一個(gè)/一個(gè)也沒(méi)有;至少有n個(gè)/至多有(n一1)個(gè);至多有一個(gè)/至少有兩個(gè);唯一/至少有兩個(gè)。
歸謬是反證法的關(guān)鍵,導(dǎo)出矛盾的過(guò)程沒(méi)有固定的模式,但必須從反設(shè)出發(fā),否則推導(dǎo)將成為無(wú)源之水,無(wú)本之木。推理必須嚴(yán)謹(jǐn)。導(dǎo)出的矛盾有如下幾種類型:與已知條件矛盾;與已知的公理、定義、定理、公式矛盾;與反設(shè)矛盾;自相矛盾。
高中數(shù)學(xué)答題策略
一、學(xué)會(huì)審題,才會(huì)解題
很多考生對(duì)審題重視不夠,往往要做的題目都沒(méi)有看清楚就急于下筆,審好題是做題的關(guān)鍵,審題一一定要逐字逐句的看清楚,通過(guò)審題發(fā)現(xiàn)題目有無(wú)易漏、易錯(cuò)點(diǎn),只有仔細(xì)審題才能從題目中獲取更多的信息,只有挖掘題目中的隱含條件、啟發(fā)解題思路,提醒常見(jiàn)解題誤區(qū)和自己易出現(xiàn)的錯(cuò)誤,才能提高解題能力。只有認(rèn)真的審題,謹(jǐn)慎的態(tài)度,才能準(zhǔn)確地揣摩出題者的意圖,發(fā)現(xiàn)更多的信息,從而快速找到解題方向。
考前保持頭腦清醒,要摒棄雜念,不斷進(jìn)行積極的心理暗示,創(chuàng)設(shè)寬松的氛圍,創(chuàng)設(shè)數(shù)學(xué)情境,進(jìn)而醞釀數(shù)學(xué)思維,靜能生慧,滿懷信心的進(jìn)行針對(duì)性的自我安慰,以平穩(wěn)自信、積極主動(dòng)的心態(tài)準(zhǔn)備應(yīng)考。這就要求我們要善于觀察。
二、先做簡(jiǎn)單題,后做難題
從我們的心理學(xué)角度來(lái)講,一般拿到試卷以后,心情比較緊張,此時(shí)不要急于下手解題,可以先對(duì)試題多少、分布、難易程度從頭到尾瀏覽一遍,做題要先易后難,做到心中有數(shù),一般簡(jiǎn)單的題目占全卷60%,這是很重要的一部分分?jǐn)?shù),見(jiàn)到簡(jiǎn)單題要細(xì)心解題,盡量使用數(shù)學(xué)語(yǔ)言,而且要更加嚴(yán)謹(jǐn)以振奮精神,養(yǎng)成良好的審題習(xí)慣鼓舞信心。
如果順序做題既耗費(fèi)時(shí)間又拿不到分,會(huì)做的題又被耽誤了。所以先做簡(jiǎn)單題,多年的經(jīng)驗(yàn)告訴我們,當(dāng)你解題不順利時(shí),更要冷靜,靜下心來(lái),沉住氣,根據(jù)自己的實(shí)際情況,果斷跳過(guò)自己不會(huì)做的題目,把簡(jiǎn)單的都做完,如果我們能把這部分的分?jǐn)?shù)拿到,就已經(jīng)打了勝仗,再集中精力做比較難的題,有了勝利的信心,面對(duì)住偏難的題更要有耐心,不要著急,可以先放棄,但也要注意認(rèn)真對(duì)待每一道題,不能走馬觀花,要相信自己。到應(yīng)有的分?jǐn)?shù)。最好還有善于把難題轉(zhuǎn)換成簡(jiǎn)單的題目的能力。
三、多做練習(xí),提升能力
整體而言高考數(shù)學(xué)要想考好,一定要做大量的練習(xí),要有扎實(shí)的理論基礎(chǔ),在此基礎(chǔ)上輔以做題技巧,才不會(huì)出現(xiàn)考試時(shí)間不夠用,自己會(huì)做的題最后沒(méi)時(shí)間做,得不償失。就要求我們?cè)诖罅康木毩?xí)的基礎(chǔ)上,認(rèn)真總結(jié)方程的思想,數(shù)形結(jié)合的思想,函數(shù)的思想等等,掌握各種類型題目的規(guī)律。
我們還要求考生不但會(huì)做題還要準(zhǔn)確快速地解答出來(lái)通過(guò)練習(xí)掌握解題技巧,利用解題技巧快速解題,通過(guò)多做練習(xí),做到熟能生巧,這才是我們練習(xí)的目的。做題還要集中注意力,這是是考試成功的保證。有時(shí)精神緊張,會(huì)做的題也會(huì)變的不會(huì)做,平時(shí)要有針對(duì)性的訓(xùn)練一些難題,有益于積極思維,樹(shù)立信心。
因此,對(duì)于大部分高考生來(lái)說(shuō),平時(shí)加強(qiáng)訓(xùn)練,養(yǎng)成準(zhǔn)確的解題習(xí)慣,熟練掌握解題技巧是非常有必要的。
四、會(huì)做的題保證做對(duì)
這一點(diǎn)很重要,實(shí)踐中發(fā)現(xiàn),考試我們會(huì)做的題丟分率是百分之十,也就是說(shuō)由于大意每次考試大家都要丟掉這么多的分,怎么將你的解題策略轉(zhuǎn)化為得分點(diǎn),雖然解題思路正確甚至很巧妙,但是最后可能做不對(duì),這一點(diǎn)往往被一些考生所忽視,但是由于不善于把圖形語(yǔ)言變成自己理解的語(yǔ)言,因此卷面上出現(xiàn)大量會(huì)又做不對(duì)的情況,我們自己的估分和得分相差甚遠(yuǎn)。如立體幾何論證中的跳步,大總分人會(huì)丟掉三分之一以上的分?jǐn)?shù),代數(shù)論證中,得分更是少 的可憐。所心我們要邊做邊檢查解題思路正確與否,做完后認(rèn)真核對(duì)。不僅把題目做完,更要保證準(zhǔn)確率,會(huì)做的一定要保證做對(duì),要能得到分。
高中數(shù)學(xué)大題解題技巧
a、三角函數(shù)與向量解題技巧
平移問(wèn)題:永遠(yuǎn)記住左右平移只是對(duì)x做變化,上下平移就是對(duì)y考點(diǎn):對(duì)于這類題型我們首先要知道它一般都是考我們什么,我覺(jué)做變化,永遠(yuǎn)切記。
b、概率解題技巧
它主要是考我們向量的數(shù)量積以及三角函數(shù)的化簡(jiǎn)問(wèn)題看,同時(shí)可能會(huì)涉及到正余弦考點(diǎn):對(duì)文科生來(lái)說(shuō),這個(gè)類型的題主要是考我們對(duì)題目意思的定理,難度一般不大。理解,在解題過(guò)程能學(xué)
只要你能熟練掌握公式,這類題都不是問(wèn)題。會(huì)樹(shù)狀圖和列表,題目也是相當(dāng)?shù)暮?jiǎn)單,只要你能審題準(zhǔn)確,這類題型:這部分大題一般都是涉及以下的題型:題都是送分題;對(duì)理
最值(值域)、單調(diào)性、周期性、對(duì)稱性、未知數(shù)的取值范圍、平移科生來(lái)說(shuō),主要注意結(jié)合排列組合、獨(dú)立重復(fù)試驗(yàn)知識(shí)點(diǎn),同時(shí)會(huì)問(wèn)題等要求我們準(zhǔn)確掌握分
解題思路:布列、期望、方差的公式,難度也是不大,都屬于送分題,是要求第一步就是根根據(jù)向量公式將表示出來(lái):其表示共有兩種方法,一我們必須拿全部分?jǐn)?shù)。
種是模長(zhǎng)公式(該種方法是在題目沒(méi)有告訴坐標(biāo)的情況下應(yīng)用),
題型:在這里我就不多說(shuō)了,都是求概率,沒(méi)有什么新穎的地方,另一種就是用坐標(biāo)公式表示出來(lái)(該種方法是在題目告訴了坐標(biāo)),不過(guò)要注意我們?cè)?jīng)
即在這里遇到過(guò)的線性規(guī)劃問(wèn)題,還有就是籃球成功率與命中率和防第二步就是三角函數(shù)的化簡(jiǎn):化簡(jiǎn)的方法都是涉及到三角函數(shù)的誘守率之間關(guān)系的類似
導(dǎo)公式(只要題目出現(xiàn)了跟或者有關(guān)的角度,一定想到誘導(dǎo)公式),題目。
解題思路:
第一步就是求出總體的情況
第二步就是求出符合題意的情況
第三步就是將兩者比起來(lái)就是題目要求的概率
這類型題目對(duì)理科生來(lái)說(shuō)一定要掌握好期望與方差的公式,同時(shí)最重要的是獨(dú)立重復(fù)試驗(yàn)概率的求法。
c、幾何解題技巧
考點(diǎn):這類題主要是考察咱們對(duì)空間物體的感覺(jué),希望大家在平時(shí)學(xué)習(xí)過(guò)程中,多培養(yǎng)一些立體的、空間的感覺(jué),將自己設(shè)身處地于那么一個(gè)立體的空間中去,這類題對(duì)文科生來(lái)說(shuō),難度都比較簡(jiǎn)單,但是對(duì)理科生來(lái)說(shuō),可能會(huì)比較復(fù)雜一些,特別是在二面角的求法上,對(duì)理科生來(lái)說(shuō)是一個(gè)巨大的挑戰(zhàn),它需要理科生能對(duì)兩個(gè)面夾角培養(yǎng)出感情來(lái),這樣輔助線的做法以及邊長(zhǎng)的求法就變得如此之簡(jiǎn)單了。
題型:
這種題型分為兩類:第一類就是證明題,也就是證明平行(線面平行、面面平行),第二類就是證明垂直(線線垂直、線面垂直、面面垂直);第二就是計(jì)算題,包括棱錐體的體積公式計(jì)算、點(diǎn)到面的距離、有關(guān)二面角的計(jì)算(理科生掌握)
解題思路:
證線面平行如直線與面有兩種方法:一種方法是在面中找到一條線與平行即可(一般情況下沒(méi)有現(xiàn)成的線存在,這個(gè)時(shí)候需要我們?cè)诿孀鲆粭l輔助線去跟線平行,一般這條輔助線的作法就是找中點(diǎn));另一種方法就是過(guò)直線作一個(gè)平面與面平行即可,輔助面的作法也基本上是找中點(diǎn)。
證面面平行:這類題比較簡(jiǎn)單,即證明這兩個(gè)平面的兩條相交線對(duì)應(yīng)平行即可。
證線面垂直如直線與面:這類型的題主要是看有前提沒(méi)有,即如果直線所在的平面與面在題目中已經(jīng)告訴我們是垂直關(guān)系了,那么我們只需要證明直線垂直于面與面的交線即可;如果題目中沒(méi)有說(shuō)直線所在的平面與面是垂直的關(guān)系,那么我們需要證明直線垂直面內(nèi)的兩條相交線即可。
其實(shí)說(shuō)實(shí)話,證明垂直的問(wèn)題都是很簡(jiǎn)單的,一般都有什么勾股定理呀,還有更多的是根據(jù)一個(gè)定理(一條直線垂直于一個(gè)面,那么這條直線就垂直這個(gè)面的任何一條線)來(lái)證明垂直。
證面面垂直與證面面垂直:這類問(wèn)題也比較簡(jiǎn)單,就是需要轉(zhuǎn)化為證線面垂直即可。
體積和點(diǎn)到面的距離計(jì)算:如果是三棱錐的體積要注意等體積法公式的應(yīng)用,一般情況就是考這個(gè)東西,沒(méi)有什么難度的,關(guān)鍵是高的尋找,一定要注意,只要你找到了高你就勝利了。除了三棱錐以外的其他錐體不要用等體積法了哈,等體積法是三棱錐的專利。二面角的計(jì)算:這類型對(duì)理科生來(lái)說(shuō)是一個(gè)噩夢(mèng),其難度有二,第一是首先你要找到二面角在什么地方,另一個(gè)難度就是你要知道這個(gè)二面角所在直角三角形的邊長(zhǎng)分別是多少。
二面角(面與面)的找法主要是遵循以下步驟:首先找到從一個(gè)面的頂點(diǎn)A出發(fā)引向另一個(gè)面的垂線,垂足為B,然后過(guò)垂足B向這兩個(gè)面的交線做垂線,垂足為C,最后將A點(diǎn)與C點(diǎn)連接起來(lái),這樣即為二面角(說(shuō)白了就是應(yīng)用三垂線定理來(lái)找)
二面角所在直角三角形的邊長(zhǎng)求法:一般應(yīng)用勾股定理,相似三角形,等面積法,正余弦定理等。
這里我著重說(shuō)一下就是在題目中可能會(huì)出現(xiàn)這樣的情況,就是兩個(gè)面的相交處是一個(gè)點(diǎn),這個(gè)時(shí)候需要我們過(guò)這個(gè)點(diǎn)補(bǔ)充完整兩個(gè)面的交線,不知道怎么補(bǔ)交線的跟我說(shuō)一聲。
d、圓錐曲線解題技巧
考點(diǎn):這類題型,其實(shí)難度真的不是很大,我個(gè)人理解主要是考大家的計(jì)算能力怎么樣,還有就是對(duì)題目的理解能力,同時(shí)也希望大家都能明白圓錐曲線中a,b,c,e的含義以及他們之間的關(guān)系,還有就是橢圓、雙曲線、拋物線的兩種定義,如果你現(xiàn)在還不知道,趁早去記一下,不然考試的時(shí)候都不知道的哈,我真的無(wú)語(yǔ)了。
題型:這種類型的題一般都是以下幾種出法:第一個(gè)問(wèn)一般情況就是求圓錐曲線方程或者就是求某一個(gè)點(diǎn)的軌跡方程,第二個(gè)問(wèn)一般都是涉及到直線的問(wèn)題,要么就是求范圍,要么就是求定值,要么就是求直線方程
解題思路:
求圓錐曲線方程:一般情況下題目有兩種求法,一種就是直接根據(jù)題目條件來(lái)求解(如題目告訴你曲線的離心率和過(guò)某一個(gè)點(diǎn)坐標(biāo)),另一種就是隱含的告訴我們橢圓的定義,然后讓我們?nèi)プ聊テ渲械囊馑迹懗銮的方程,這種問(wèn)法就比較難點(diǎn),其實(shí)也主要是看我們的基本功底怎么樣,對(duì)基礎(chǔ)扎實(shí)的同學(xué)來(lái)說(shuō),這種問(wèn)法也不是問(wèn)題的。
求軌跡方程:這種問(wèn)題需要我們首先對(duì)要求點(diǎn)的坐標(biāo)設(shè)出來(lái)A(x,y),然后用A點(diǎn)表示出題目中某一已知點(diǎn)B的坐標(biāo),然后用表示出來(lái)的點(diǎn)坐標(biāo)代入點(diǎn)B的軌跡方程中,這樣就可以求出A點(diǎn)的軌跡方程了,一般求出來(lái)都是圓錐曲線方程,如果不是,你就可能錯(cuò)了。直線與圓錐曲線問(wèn)題:三個(gè)步驟你還知道嗎(一設(shè)、二代,三韋達(dá))。
先做完這個(gè)三個(gè)步驟,然后看題目給了我們什么條件,然后對(duì)條件進(jìn)行化簡(jiǎn)(一般的條件都是跟向量呀,斜率呀什么的聯(lián)系起來(lái),希望大家注意點(diǎn)),在化簡(jiǎn)的過(guò)程中我們需要代韋達(dá)進(jìn)去運(yùn)算,如果我們?cè)谶\(yùn)算的過(guò)程中遇到了,一定要記得應(yīng)用直線方程將表示出來(lái),然后根據(jù)韋達(dá)化簡(jiǎn)到最后結(jié)果。最后看題目問(wèn)我們什么,如果問(wèn)定值,你還知道怎么做么,不知道的就現(xiàn)在來(lái)問(wèn)我,如果問(wèn)我們范圍,你還知道有一個(gè)東西么,如果問(wèn)直線方程,你求出來(lái)的直線斜率有兩個(gè),還知道怎么做么,如果要想舍去其中一個(gè),你還記得一個(gè)東西么。同時(shí)如果你是一個(gè)追求完美的人,我希望你在做題的時(shí)候考慮到直線斜率存在與否的問(wèn)題,如果你覺(jué)得你心胸開(kāi)闊,那點(diǎn)分?jǐn)?shù)我不要了,我考慮斜率存不存在的問(wèn)題,那么我就說(shuō)你牛!!
個(gè)人理解的話,圓錐曲線都不是很難的,就是計(jì)算量比較復(fù)雜了一點(diǎn),但是只要我們用心、專心點(diǎn),都是可以做出來(lái)的,不信你慢慢的去嘗試看看!
e、函數(shù)導(dǎo)數(shù)解題技巧
考點(diǎn):這種類型的題主要是考大家對(duì)導(dǎo)數(shù)公式的應(yīng)用,導(dǎo)數(shù)的含義,明確導(dǎo)數(shù)可以用來(lái)干什么,如果你都不知道導(dǎo)數(shù)可以用來(lái)干什么,你還談什么做題呢。在導(dǎo)數(shù)這塊,我是希望大家都能盡量的多拿一些分?jǐn)?shù),因?yàn)槠潆y度不是很大,主要你用心去學(xué)習(xí)了,記住方法了,這個(gè)分?jǐn)?shù)對(duì)我們來(lái)說(shuō)都是可以小菜一碟的。
題型:
最值、單調(diào)性(極值)、未知數(shù)的取值范圍(不等式)、未知數(shù)的取值范圍(交點(diǎn)或者零點(diǎn))
解題思路:
最值、單調(diào)性(極值):首先對(duì)原函數(shù)求導(dǎo),然后令導(dǎo)函數(shù)為零求出極值點(diǎn),然后畫出表格判斷出在各個(gè)區(qū)間的單調(diào)性,最后得出結(jié)論。未知數(shù)的取值范圍(不等式):其實(shí)它就是一種一種變相的求最值問(wèn)題,不知道大家還記得么,記住我講課的表情,未知數(shù)放在一邊,把已知的數(shù)放在另外一邊,求出相應(yīng)的最值,咱們就勝利了,這個(gè)種看起來(lái)很復(fù)雜,其實(shí)很簡(jiǎn)單,你說(shuō)呢。
未知數(shù)的取值范圍(交點(diǎn)或者零點(diǎn)):這種要是沒(méi)有掌握方法的人,覺(jué)得:哇,怎么就那么難呀,其實(shí)不然,很簡(jiǎn)單的,只是各位你要明確這種題的解題思路哈。首先還是需要我們把要求的未知數(shù)放在一邊,把知道的數(shù)放在一邊去,這樣去求出已知數(shù)的最值,然后簡(jiǎn)單的畫一個(gè)圖形我們就可以分析出未知數(shù)的取值范圍了,說(shuō)起來(lái)也挺簡(jiǎn)單的,如果有什么不了解的,可以馬上問(wèn)我,不要留下遺憾。
f、數(shù)列解題技巧
考點(diǎn):
對(duì)于數(shù)列,我對(duì)大家的要求不是很高,我只是希望大家能盡自己的所能,盡量的去多拿分?jǐn)?shù),如果要是有人能全部做對(duì),我也替你高興,這類題型,主要是考大家對(duì)等比等差數(shù)列的理解,包括通項(xiàng)與求和,難度還是有的,其實(shí)你要是留意生活的話,這類題還是不是我們想象中那么困難哈。
題型:
一般分為證明和計(jì)算(包括通項(xiàng)公式、求和、比較大小),
解題思路:
證明:就是要求我們證明一個(gè)數(shù)列是等比數(shù)列后還是等差數(shù)列,這種題的做法有兩種,一種是用,或者,我們就可以證明其為一個(gè)等差數(shù)列或者等比數(shù)列。另一種方法就是應(yīng)用等差中項(xiàng)或者等比中項(xiàng)來(lái)證明數(shù)列。
計(jì)算(通項(xiàng)公式):一般這個(gè)題都還是比較簡(jiǎn)單的,這類型的題,我只要求大家能掌握其中題目表達(dá)式的關(guān)鍵字眼(如出現(xiàn)要用什么方法,如果出現(xiàn)要用什么方法,如果出現(xiàn)如果出現(xiàn)),我相信通項(xiàng)公式對(duì)大家來(lái)說(shuō)應(yīng)該是達(dá)到駕輕就熟的地步了,希望大家能把握這么容易的分?jǐn)?shù)。
求和:這種題對(duì)文科生來(lái)說(shuō),應(yīng)該知道我要說(shuō)什么了吧,王福叉數(shù)列(等比等差數(shù)列)呀!!,
三個(gè)步驟:乘公比,錯(cuò)位相減,化系數(shù)為一。光是記住步驟沒(méi)有用的,同時(shí)我也希望同學(xué)們不要眼高手低,不要以為很簡(jiǎn)單的,其實(shí)真正能算正確的不一定那么容易的,所以我還是希望大家多加練習(xí),親自操作一下。對(duì)理科生來(lái)說(shuō),也要注意這樣的數(shù)列求和,同時(shí)還要掌握一種數(shù)列求和,就是這個(gè)數(shù)列求和是將其中的一個(gè)等差或等比數(shù)列按照一定的順序抽調(diào)了一部分?jǐn)?shù)列,然后構(gòu)成一個(gè)新的數(shù)列求和,還有就是要注意了如果題目里面涉及到這個(gè)的時(shí)候,一定要記住數(shù)列相互奇偶性的討論了,非常的重要哈。
比較大。哼@種題目我對(duì)大家的要求很低,因?yàn)橐话愣际欠趴s法的問(wèn)題,我也不是要求大家非要怎么樣怎么樣的,對(duì)這類問(wèn)題需要我們的基本功底很深,要學(xué)會(huì)適當(dāng)?shù)姆糯蠛头判〉膯?wèn)題,對(duì)這個(gè)問(wèn)題的把握,需要大家對(duì)一些經(jīng)常遇到的放縮公式印在腦海里面。
補(bǔ)充:在不是導(dǎo)數(shù)的其他大題中,如果遇到求最值的問(wèn)題,一般有兩種方法求解,一種是二次函數(shù)求最值,一種就是基本不等式求最值。
高中數(shù)學(xué)大題解題技巧
高考數(shù)學(xué)解析幾何解題路徑
我們先來(lái)分析一下解析幾何高考的命題趨勢(shì):
(1)題型穩(wěn)定:近幾年來(lái)高考解析幾何試題一直穩(wěn)定在三(或二)個(gè)選擇題,一個(gè)填空題,一個(gè)解答題上,分值約為30分左右,占總分值的20%左右。
(2)整體平衡,重點(diǎn)突出:《考試說(shuō)明》中解析幾何部分原有33個(gè)知識(shí)點(diǎn),現(xiàn)縮為19個(gè)知識(shí)點(diǎn),一般考查的知識(shí)點(diǎn)超過(guò)50%,其中對(duì)直線、圓、圓錐曲線知識(shí)的考查幾乎沒(méi)有遺漏,通過(guò)對(duì)知識(shí)的重新組合,考查時(shí)既注意全面,更注意突出重點(diǎn),對(duì)支撐數(shù)學(xué)科知識(shí)體系的主干知識(shí),考查時(shí)保證較高的比例并保持必要深度。近四年新教材高考對(duì)解析幾何內(nèi)容的考查主要集中在如下幾個(gè)類型:
、偾笄方程(類型確定、類型未定);
、谥本與圓錐曲線的交點(diǎn)問(wèn)題(含切線問(wèn)題);
③與曲線有關(guān)的最(極)值問(wèn)題;
、芘c曲線有關(guān)的幾何證明(對(duì)稱性或求對(duì)稱曲線、平行、垂直);
、萏角笄方程中幾何量及參數(shù)間的數(shù)量特征;
(3)能力立意,滲透數(shù)學(xué)思想:如2000年第(22)題,以梯形為背景,將雙曲線的概念、性質(zhì)與坐標(biāo)法、定比分點(diǎn)的坐標(biāo)公式、離心率等知識(shí)融為一體,有很強(qiáng)的綜合性。一些雖是常見(jiàn)的基本題型,但如果借助于數(shù)形結(jié)合的思想,就能快速準(zhǔn)確的得到答案。
(4)題型新穎,位置不定:近幾年解析幾何試題的難度有所下降,選擇題、填空題均屬易中等題,且解答題未必處于壓軸題的位置,計(jì)算量減少,思考量增大。加大與相關(guān)知識(shí)的聯(lián)系(如向量、函數(shù)、方程、不等式等),凸現(xiàn)教材中研究性學(xué)習(xí)的能力要求。加大探索性題型的分量。
在近年高考中,對(duì)直線與圓內(nèi)容的考查主要分兩部分:
(1)以選擇題題型考查本章的基本概念和性質(zhì),此類題一般難度不大,但每年必考,考查內(nèi)容主要有以下幾類:
、倥c本章概念(傾斜角、斜率、夾角、距離、平行與垂直、線性規(guī)劃等)有關(guān)的問(wèn)題;
、趯(duì)稱問(wèn)題(包括關(guān)于點(diǎn)對(duì)稱,關(guān)于直線對(duì)稱)要熟記解法;
、叟c圓的位置有關(guān)的問(wèn)題,其常規(guī)方法是研究圓心到直線的距離.
以及其他“標(biāo)準(zhǔn)件”類型的基礎(chǔ)題。
(2)以解答題考查直線與圓錐曲線的位置關(guān)系,此類題綜合性比較強(qiáng),難度也較大。
預(yù)計(jì)在今后一、二年內(nèi),高考對(duì)本章的考查會(huì)保持相對(duì)穩(wěn)定,即在題型、題量、難度、重點(diǎn)考查內(nèi)容等方面不會(huì)有太大的變化。
相比較而言,圓錐曲線內(nèi)容是平面解析幾何的核心內(nèi)容,因而是高考重點(diǎn)考查的內(nèi)容,在每年的高考試卷中一般有2~3道客觀題和一道解答題,難度上易、中、難三檔題都有,主要考查的內(nèi)容是圓錐曲線的概念和性質(zhì),直線與圓錐的位置關(guān)系等,從近十年高考試題看大致有以下三類:
(1)考查圓錐曲線的概念與性質(zhì);
(2)求曲線方程和求軌跡;
(3)關(guān)于直線與圓及圓錐曲線的位置關(guān)系的問(wèn)題.
選擇題主要以橢圓、雙曲線為考查對(duì)象,填空題以拋物線為考查對(duì)象,解答題以考查直線與圓錐曲線的位置關(guān)系為主,對(duì)于求曲線方程和求軌跡的題,高考一般不給出圖形,以考查學(xué)生的想象能力、分析問(wèn)題的能力,從而體現(xiàn)解析幾何的基本思想和方法,圓一般不單獨(dú)考查,總是與直線、圓錐曲線相結(jié)合的綜合型考題,等軸雙曲線基本不出題,坐標(biāo)軸平移或平移化簡(jiǎn)方程一般不出解答題,大多是以選擇題形式出現(xiàn).解析幾何的解答題一般為難題,近兩年都考查了解析幾何的基本方法——坐標(biāo)法以及二次曲線性質(zhì)的運(yùn)用的命題趨向要引起我們的重視.
請(qǐng)同學(xué)們注意圓錐曲線的定義在解題中的應(yīng)用,注意解析幾何所研究的問(wèn)題背景平面幾何的一些性質(zhì).從近兩年的試題看,解析幾何題有前移的趨勢(shì),這就要求考生在基本概念、基本方法、基本技能上多下功夫.參數(shù)方程是研究曲線的輔助工具.高考試題中,涉及較多的是參數(shù)方程與普通方程互化及等價(jià)變換的數(shù)學(xué)思想方法。
高二數(shù)學(xué)必修3知識(shí)點(diǎn)整理:幾何概型
幾何概型
【考點(diǎn)分析】
在段考中,多以選擇題和填空題的形式考查幾何概型的計(jì)算公式等知識(shí)點(diǎn),也會(huì)以解答題的形式考查。在高考中有時(shí)會(huì)以選擇題和填空題的形式考查幾何概型的計(jì)算公式,有時(shí)也不考,一般屬于中檔題。
【知識(shí)點(diǎn)誤區(qū)】
求幾何概型時(shí),注意首先尋找到一些重要的臨界位置,再解答。一般與線性規(guī)劃知識(shí)有聯(lián)系。
【同步練習(xí)題】
1.已知函數(shù)f(x)=log2x,若在[1,8]上任取一個(gè)實(shí)數(shù)x0,則不等式1≤f(x0)≤2成立的概率是.
解析:區(qū)間[1,8]的長(zhǎng)度為7,滿足不等式1≤f(x0)≤2即不等式1≤log2x0≤2,解答2≤x0≤4,對(duì)應(yīng)區(qū)間[2,4]長(zhǎng)度為2,由幾何概型公式可得使不等式1≤f(x0)≤2成立的概率是27.
點(diǎn)評(píng):本題考查了幾何概型問(wèn)題,其與線段上的區(qū)間長(zhǎng)度及函數(shù)被不等式的解法問(wèn)題相交匯,使此類問(wèn)題具有一定的靈活性,關(guān)鍵是明確集合測(cè)度,本題利用區(qū)間長(zhǎng)度的比求幾何概型的概率.
2.在區(qū)間[-3,5]上隨機(jī)取一個(gè)數(shù)a,則使函數(shù)f(x)=x2+2ax+4無(wú)零點(diǎn)的概率是.
解析:由已知區(qū)間[-3,5]長(zhǎng)度為8,使函數(shù)f(x)=x2+2ax+4無(wú)零點(diǎn)即判別式Δ=4a2-16<0,解得-2點(diǎn)評(píng):本題屬于幾何概型,只要求出區(qū)間長(zhǎng)度以及滿足條件的區(qū)間長(zhǎng)度,由幾何概型公式解答.
高三數(shù)學(xué)立體幾何知識(shí)點(diǎn)復(fù)習(xí)
學(xué)好立幾并不難,空間想象是關(guān)鍵。點(diǎn)線面體是一家,共筑立幾百花園。
點(diǎn)在線面用屬于,線在面內(nèi)用包含。四個(gè)公理是基礎(chǔ),推證演算巧周旋。
空間之中兩條線,平行相交和異面。線線平行同方向,等角定理進(jìn)空間。
判定線和面平行,面中找條平行線。已知線與面平行,過(guò)線作面找交線。
要證面和面平行,面中找出兩交線,線面平行若成立,面面平行不用看。
已知面與面平行,線面平行是必然;若與三面都相交,則得兩條平行線。
判定線和面垂直,線垂面中兩交線。兩線垂直同一面,相互平行共伸展。
兩面垂直同一線,一面平行另一面。要讓面與面垂直,面過(guò)另面一垂線。
面面垂直成直角,線面垂直記心間。
一面四線定射影,找出斜射一垂線,線線垂直得巧證,三垂定理風(fēng)采顯。
空間距離和夾角,平行轉(zhuǎn)化在平面,一找二證三構(gòu)造,三角形中求答案。
引進(jìn)向量新工具,計(jì)算證明開(kāi)新篇。空間建系求坐標(biāo),向量運(yùn)算更簡(jiǎn)便。
知識(shí)創(chuàng)新無(wú)止境,學(xué)問(wèn)思辨勇攀登。
多面體和旋轉(zhuǎn)體,上述內(nèi)容的延續(xù)。扮演載體新角色,位置關(guān)系全在里。
算面積來(lái)求體積,基本公式是依據(jù)。規(guī)則形體用公式,非規(guī)形體靠化歸。
展開(kāi)分割好辦法,化難為易新天地。
【高中數(shù)學(xué)九大解題技巧】相關(guān)文章:
小學(xué)奧數(shù)解題技巧12-07
高考英語(yǔ)語(yǔ)法填空解題技巧02-14
英語(yǔ)閱讀8大題型解題技巧11-11
高中數(shù)學(xué)教案11-10
高中數(shù)學(xué)推理方法11-10