初中常見的公式、性質(zhì)、定理
導(dǎo)語:概念(性質(zhì)、定理)的記憶對于初中數(shù)學(xué)的學(xué)習(xí)尤為重要,以下是小編為大家精心整理的初中常見的公式、性質(zhì)、定理,歡迎大家參考!
1、有理數(shù)的加法運算:
同號相加一邊倒;異號相加“大”減“小”,
符號跟著大的跑;絕對值相等“零”正好.
2、合并同類項:
合并同類項,法則不能忘,只求系數(shù)和,字母、指數(shù)不變樣.
3、去、添括號法則:
去括號、添括號,關(guān)鍵看符號,
括號前面是正號,去、添括號不變號,
括號前面是負(fù)號,去、添括號都變號.
4、一元一次方程:
已知未知要分離,分離方法就是移,加減移項要變號,乘除移了要顛倒.
5、平方差公式:
平方差公式有兩項,符號相反切記牢,首加尾乘首減尾,莫與完全公式相混淆.
6、完全平方公式:
完全平方有三項,首尾符號是同鄉(xiāng),首平方、尾平方,乘積二倍±放中央;
7、因式分解:
一提(公因式)二套(公式)三分組,細(xì)看幾項不離譜,
兩項只用平方差,三項十字相乘法,陣法熟練不馬虎,
四項仔細(xì)看清楚,若有三個平方數(shù)(項),
就用一三來分組,否則二二去分組,
五項、六項更多項,二三、三三試分組,
以上若都行不通,拆項、添項看清楚.
8、單項式運算:
加、減、乘、除、乘(開)方,三級運算分得清,
系數(shù)進(jìn)行同級(運)算,指數(shù)運算降級(進(jìn))行.
9、一元一次不等式解題的一般步驟:
去分母、去括號,移項時候要變號,同類項合并好,再把系數(shù)來除掉,
兩邊除(以)負(fù)數(shù)時,不等號改向別忘了.
10、一元一次不等式組的解集:
大大取較大,小小取較小,小大、大小取中間,大小、小大無處找
一元二次不等式、一元一次絕對值不等式的解集:
大(魚)于(吃)取兩邊,。~)于(吃)取中間.
11、分式混合運算法則:
分式四則運算,順序乘除加減,乘除同級運算,除法符號須變(乘);
乘法進(jìn)行化簡,因式分解在先,分子分母相約,然后再行運算;
加減分母需同,分母化積關(guān)鍵;找出最簡公分母,通分不是很難;
變號必須兩處,結(jié)果要求最簡.
12、分式方程的解法步驟:
同乘最簡公分母,化成整式寫清楚,
求得解后須驗根,原(根)留、增(根)舍,別含糊.
13、最簡根式的條件:
最簡根式三條件,號內(nèi)不把分母含,
冪指數(shù)(根指數(shù))要互質(zhì)、冪指比根指小一點.
14、特殊點的坐標(biāo)特征:
坐標(biāo)平面點(x,y),橫在前來縱在后;
。ǎ,+),(-,+),(-,-)和(+,-),四個象限分前后;
x軸上y為0,x為0在y軸.
象限角的平分線:
象限角的平分線,坐標(biāo)特征有特點,一、三橫縱都相等,二、四橫縱卻相反.
平行某軸的直線:
平行某軸的直線,點的坐標(biāo)有講究,
直線平行x軸,縱坐標(biāo)相等橫不同;
直線平行于y軸,點的橫坐標(biāo)仍照舊
15、對稱點的坐標(biāo):
對稱點坐標(biāo)要記牢,相反數(shù)位置莫混淆,
x軸對稱y相反,y軸對稱x相反;
原點對稱最好記,橫縱坐標(biāo)全變號.
16、自變量的取值范圍:
分式分母不為零,偶次根下負(fù)不行;
零次冪底數(shù)不為零,整式、奇次根全能行.
17、函數(shù)圖象的移動規(guī)律:
若把一次函數(shù)的`解析式寫成y=k(x+0)+b,
二次函數(shù)的解析式寫成y=a(x+h)2+k的形式,
則可用下面的口訣
“左右平移在括號,上下平移在末稍,左正右負(fù)須牢記,上正下負(fù)錯不了”
18、一次函數(shù)的圖象與性質(zhì)的口訣:
一次函數(shù)是直線,圖象經(jīng)過三象限;
正比例函數(shù)更簡單,經(jīng)過原點一直線;
兩個系數(shù)k與b,作用之大莫小看,k是斜率定夾角,b與y軸來相見,
k為正來右上斜,x增減y增減;
k為負(fù)來左下展,變化規(guī)律正相反;
k的絕對值越大,線離橫軸就越遠(yuǎn).
19、二次函數(shù)的圖象與性質(zhì)的口訣:
二次函數(shù)拋物線,圖象對稱是關(guān)鍵;
開口、頂點和交點,它們確定圖象現(xiàn);
開口、大小由a斷,c與y軸來相見;
b的符號較特別,符號與a相關(guān)聯(lián);
頂點位置先找見,y軸作為參考線;
左同右異中為0,牢記心中莫混亂;
頂點坐標(biāo)最重要,一般式配方它就現(xiàn);
橫標(biāo)即為對稱軸,縱標(biāo)函數(shù)最值見.
若求對稱軸位置, 符號反,一般、頂點、交點式,不同表達(dá)能互換.
20、反比例函數(shù)的圖象與性質(zhì)的口訣:
反比例函數(shù)有特點,雙曲線相背離得遠(yuǎn);
k為正,圖在一、三(象)限,k為負(fù),圖在二、四(象)限;
圖在一、三函數(shù)減,兩個分支分別減.
圖在二、四正相反,兩個分支分別增;
線越長越近軸,永遠(yuǎn)與軸不沾邊.
21、特殊三角函數(shù)值記憶:
正弦、余弦、正切、余切值:(對斜、臨斜、對臨、臨對)的比值;
首先記住30度、45度、60度的正弦值、余弦值的分母都是2,
正切、余切的分母都是3,分子記口訣“123,321,三九二十七”即可.
三角函數(shù)的增減性:正增余減
22、數(shù)字巧記:
23、平行四邊形的判定:
要證平行四邊形,兩個條件才能行,
一證對邊都相等,或證對邊都平行,
一組對邊也可以,必須相等且平行.
對角線,是個寶,互相平分“跑不了”,
對角相等也有用,“兩組對角”才能成.
24、梯形問題的輔助線:
移動梯形對角線,兩腰之和成一線;
平行移動一條腰,兩腰同在“△”現(xiàn);
延長兩腰交一點,“△”中有平行線;
作出梯形兩高線,矩形顯示在眼前;
已知腰上一中線,莫忘作出中位線.
25、添加輔助線歌:
1、
輔助線,怎么添?找出規(guī)律是關(guān)鍵.
題中若有角(平)分線,可向兩邊作垂線;
線段垂直平分線,引向兩端把線連;
三角形邊兩中點,連接則成中位線;
三角形中有中線,延長中線翻一番.
2、
輔助線,如何添?把握定理和概念。
還要刻苦加鉆研,找出規(guī)律憑經(jīng)驗。
圖中有角平分線,可向兩邊作垂線。
角平分線平行線,等腰三角形來添。?
線段垂直平分線,常向兩端把線連。
要證線段倍與半,延長縮短可試驗。
三角形中兩中點,連接則成中位線。
三角形中有中線,延長中線加一倍。
梯形里面作高線,平移一腰試試看。
等積式子比例換,尋找相似很關(guān)鍵。
直接證明有困難,等量代換少麻煩。
斜邊上面作高線,弦高公式是關(guān)鍵。
半徑與弦長計算,弦心距來中間站。
圓上若有一切線,切點圓心半徑連。
要想證明是切線,半徑垂線仔細(xì)辨。
是直徑,成半圓,想成直角徑連弦。
弧有中點圓心連,垂徑定理要記全。
圓周角邊兩條弦,直徑和弦端點連。
要想作個外接圓,各邊作出中垂線。
還要作個內(nèi)切圓,內(nèi)角平分線夢園。
如果遇到相交圓,不要忘作公共弦。
若是添上連心線,切點肯定在上面。
輔助線,是虛線,畫圖注意勿改變。
假如圖形較分散,對稱旋轉(zhuǎn)去實驗。
基本作圖很關(guān)鍵,平時掌握要熟練。
解題還要多心眼,經(jīng)?偨Y(jié)方法顯。
【初中常見的公式、性質(zhì)、定理】相關(guān)文章:
初中數(shù)學(xué)性質(zhì)定理「總結(jié)」07-15
初中數(shù)學(xué)公式定理大全01-29
常見的初中數(shù)學(xué)公式01-29