- P(gun)]
2016P(gun)ڸһ(sh)Wıһʽȫ
ZֻŬʵ픷ܰ픷_y˵Ľ̿ƕСǴ,(sh)W֪Rϣ,gӭxHP(gun)֪RՈP(gun)עCNFLAzWW(wng)!
֗l (ж)
1. AеһԪضǼBԪôAǼBӼ
2. AǼB ӼBһԪزAôAǼBӼ
3. AÿһԪضǼB ԪBÿһԪҲǼA ԪôAڼB
4. ڽoăɂABɌABԪؘ(gu)ɵļABĽ
5. A∩B=AtAB
6. ڽoăɂABɃɂԪؘ(gu)ɵļABIJ
7. A∪B=BtAB
8. oAȫUһӼôUвAԪؘ(gu)ɵļAUеa
9. oһxֵؾʹ_Ψһһyֵôyxĺ(sh)
10. AһǿՔ(sh)A┵(sh)xմ_ķtf, Ψһ_Ĕ(sh)yct@NP(gun)ϵAϵһ(sh)
11. ABǃɂǿռϣմ_ķtfAһԪxB҃HһԪycxtfǼABӳ
12. ӳfǼABӳҌBһԪأڼAж҃Hһԭt@ɂϴһһP(gun)ϵ
13. ں(sh)Ķx(ni)xIJͬȡֵ^(q)gвͬČtô@N(sh)Ƿֶκ(sh)
14. (sh)y=f(x) ĶxAȡ^(q)gMAеɂֵx1x2x= x2-x10ty= f(x2)-f(x1) 0r(sh)y=f(x)څ^(q)gM(sh)y= f(x2)-f(x1) 0r(sh)y=f(x)څ^(q)gMǜp(sh)
15. һ(sh)ij^(q)gM(sh)p(sh)t@(sh)@^(q)gMϾІ{(dio)ԡ
16. (sh)y=f(x) ĶxDDһx-xDf(-x)= -f(x)t@(sh)溯(sh)
17. (sh)y=f(x) ĶxDDһx-xDg(-x)=g(x)t@(sh)ż(sh)
18. һ(sh)ĈDԭc錦QĵČQDΣt@(sh)溯(sh)
19. һ(sh)ĈDyS錦QSSQDt@(sh)ż(sh)
20. y=kx+b(k≠0)ĺ(sh)һκ(sh)
21. Ժ(sh)һκ(sh)
22. y=ax2+bx+c(a≠0) ĺ(sh)Ƕκ(sh)
23. (sh)y=f(x)ڌ(sh)aֵ̎f(a)=0ta@(sh)c
24. ax2+bx+c=0(a≠0)ЃɂȌ(sh)r=b2-4ac0; ax2+bx+c=0(a≠0)ЃɂȌ(sh)r=b2-4ac=0; ax2+bx+c=0(a≠0)]Ќ(sh)r=b2-4ac 0
25. (sh)Dͨ^cr^xSt@ӵc׃̖c
26. y=ax(a0,a≠1,xR)ĺ(sh)ָ(sh)(sh)
27. y=logax(a0,a≠1,x0)ĺ(sh)nj(sh)(sh)
28. һ(sh)һһӳrҰ@(sh)׃һº(sh)׃@(sh)׃һº(sh)׃t@ɂ(sh)鷴(sh)
29. y=xa(aR)ĺ(sh)ǃ纯(sh)
Ҫl (|(zh))
1. AǼB ӼôAеһԪضǼBԪء
2. AǼBӼôAǼB ӼBһ
ԪزA
3. AڼBôAÿһԪضǼB ԪBÿһ
ԪҲǼA Ԫ
4. ڽoăɂABĽɌABԪؘ(gu)ɵļ
5. ABtA∩B=A
6. ڽoăɂABIJɃɂԪؘ(gu)ɵļ
7. ABtA∪B=B
8. oAȫUһӼôAUеaUвAԪؘ(gu)ɵļ
9. yxĺ(sh)ôoһxֵؾʹ_Ψһһyֵ
10. AһǿՔ(sh)tAϵһ(sh)njA┵(sh)xմ_ķtf, Ψһ_Ĕ(sh)ycČP(gun)ϵ
11. ABǃɂǿռ_ķtfǼABӳ䣬ôAһԪxB҃HһԪycx
12. ӳfǼABӳ䣬ABɂϴһһP(gun)ϵôBһԪڼAж҃Hһԭ
13. ں(sh)Ķx(ni)ֶκ(sh)xIJͬȡֵ^(q)gвͬČt
14. (sh)y=f(x) ĶxAȡ^(q)gMAеɂֵx1x2x= x2-x10څ^(q)gM(sh)ty= f(x2)-f(x1) 0;(sh)y=f(x)څ^(q)gMǜp(sh)ty= f(x2)-f(x1) 0
15. һ(sh)ij^(q)gMϾІ{(dio)t@(sh)@^(q)gM(sh)p(sh)
16. (sh)y=f(x) ĶxD@(sh)溯(sh)tDһx-xDf(-x)= -f(x)
17. (sh)y=f(x) ĶxD@(sh)ż(sh)tDһx-xDg(-x)=g(x)
18. һ(sh)溯(sh)t@(sh)ĈDԭc錦QĵČQDΡ
19. һ(sh)ż(sh)t@(sh)ĈDyS錦QSSQDΡ
20. һκ(sh)y=kx+b(k≠0)ĺ(sh)
21. һκ(sh)ǾԺ(sh)
22. κ(sh)y=ax2+bx+c(a≠0) ĺ(sh)
23. aǺ(sh)y=f(x)ct@(sh)ڌ(sh)aֵ̎f(a)=0
24. ax2+bx+c=0(a≠0)Єeʽ=b2-4ac0rЃɂȌ(sh); ax2+bx+c=0(a≠0)Єeʽ=b2-4ac=0rЃɂȌ(sh);ax2+bx+c=0(a≠0)Єeʽ=b2-4ac 0r̛]Ќ(sh)
25. (sh)һc׃̖ct(sh)Dͨ^ԓcr^xS
26. ָ(sh)(sh)y=ax(a0,a≠1,xR)ĺ(sh)
27. (sh)(sh)y=logax(a0,a≠1,x0)ĺ(sh)
28. ɂ(sh)鷴(sh)tɺ(sh)һһӳҺ(sh)f(x)׃f’(x)׃f(x)׃f’(x)׃
29. 纯(sh)y=xa(aR)ĺ(sh)
30. (sh)(sh)y=logax(a0,a≠1)x(0,+∞)ֵR;ڶx(ni)a1r(sh)0a1rǜp(sh);D^c(10)
һ(sh)WıһʽP(gun)£
߿ĵȲ(sh)йʽw{12-09
һ(sh)W֪RcʽĆ}10-09
һӢZķx28ƪ11-13
һһ02-18
Д(sh)W֪Rc07-21
һ(sh)WǺ(sh)ʽR03-30
һ(sh)WʽDzʽ03-25
п(sh)W֪Rcƽж02-06
пĔ(sh)W֪Rcȫ06-09
Д(sh)W(sh)W\㷨t04-12