亚洲天堂中文字幕一区二区|亚洲精品无播放器在线播放网站|亚洲精品熟女国产国产老熟女|亚洲欧美在线人成最新按摩

        
        
      • <form id="etzky"></form>
          <td id="etzky"><tr id="etzky"></tr></td>

          һ(sh)Wıһʽ

          rg2022-10-06 22:50:55 Д(sh)W ҪͶ
          • P(gun)]

          2016P(gun)ڸһ(sh)Wıһʽȫ

          ZֻŬʵ픷ܰ픷_y˵Ľ̿ƕСǴ,(sh)W֪Rϣ,gӭxHP(gun)֪RՈP(gun)עCNFLAzWW(wng)!

          2016P(gun)ڸһ(sh)Wıһʽȫ

          ֗l (ж)

          1. AеһԪضǼBԪôAǼBӼ

          2. AǼB ӼBһԪزAôAǼBӼ

          3. AÿһԪضǼB ԪBÿһԪҲǼA ԪôAڼB

          4. ڽoăɂABɌA֌BԪؘ(gu)ɵļABĽ

          5. A∩B=AtAB

          6. ڽoăɂABɃɂԪؘ(gu)ɵļABIJ

          7. A∪B=BtAB

          8. oAȫUһӼôUвAԪؘ(gu)ɵļAUеa

          9. oһxֵؾʹ_Ψһһyֵôyxĺ(sh)

          10. AһǿՔ(sh)A┵(sh)xմ_ķtf, Ψһ_Ĕ(sh)yct@NP(gun)ϵAϵһ(sh)

          11. ABǃɂǿռϣմ_ķtfAһԪxB҃HһԪycxtfǼABӳ

          12. ӳfǼABӳҌBһԪأڼAж҃Hһԭt@ɂϴһһP(gun)ϵ

          13. ں(sh)Ķx(ni)xIJͬȡֵ^(q)gвͬČtô@N(sh)Ƿֶκ(sh)

          14. (sh)y=f(x) ĶxAȡ^(q)gMAеɂֵx1x2x= x2-x10ty= f(x2)-f(x1) 0r(sh)y=f(x)څ^(q)gM(sh)y= f(x2)-f(x1) 0r(sh)y=f(x)څ^(q)gMǜp(sh)

          15. һ(sh)ij^(q)gM(sh)p(sh)t@(sh)@^(q)gMϾІ{(dio)ԡ

          16. (sh)y=f(x) ĶxDDһx-xDf(-x)= -f(x)t@(sh)溯(sh)

          17. (sh)y=f(x) ĶxDDһx-xDg(-x)=g(x)t@(sh)ż(sh)

          18. һ(sh)ĈDԭc錦QĵČQDΣt@(sh)溯(sh)

          19. һ(sh)ĈDyS錦QSSQDt@(sh)ż(sh)

          20. y=kx+b(k≠0)ĺ(sh)һκ(sh)

          21. Ժ(sh)һκ(sh)

          22. y=ax2+bx+c(a≠0) ĺ(sh)Ƕκ(sh)

          23. (sh)y=f(x)ڌ(sh)aֵ̎f(a)=0ta@(sh)c

          24. ax2+bx+c=0(a≠0)ЃɂȌ(sh)r=b2-4ac0; ax2+bx+c=0(a≠0)ЃɂȌ(sh)r=b2-4ac=0; ax2+bx+c=0(a≠0)]Ќ(sh)r=b2-4ac 0

          25. (sh)Dͨ^cr^xSt@ӵc׃̖c

          26. y=ax(a0,a≠1,xR)ĺ(sh)ָ(sh)(sh)

          27. y=logax(a0,a≠1,x0)ĺ(sh)nj(sh)(sh)

          28. һ(sh)һһӳrҰ@(sh)׃һº(sh)׃@(sh)׃һº(sh)׃t@ɂ(sh)鷴(sh)

          29. y=xa(aR)ĺ(sh)ǃ纯(sh)

          Ҫl (|(zh))

          1. AǼB ӼôAеһԪضǼBԪء

          2. AǼBӼôAǼB ӼBһ

          ԪزA

          3. AڼBôAÿһԪضǼB ԪBÿһ

          ԪҲǼA Ԫ

          4. ڽoăɂABĽɌA֌BԪؘ(gu)ɵļ

          5. ABtA∩B=A

          6. ڽoăɂABIJɃɂԪؘ(gu)ɵļ

          7. ABtA∪B=B 

          8. oAȫUһӼôAUеaUвAԪؘ(gu)ɵļ

          9. yxĺ(sh)ôoһxֵؾʹ_Ψһһyֵ

          10. AһǿՔ(sh)tAϵһ(sh)njA┵(sh)xմ_ķtf, Ψһ_Ĕ(sh)ycČP(gun)ϵ

          11. ABǃɂǿռ_ķtfǼABӳ䣬ôAһԪxB҃HһԪycx

          12. ӳfǼABӳ䣬ABɂϴһһP(gun)ϵôBһԪڼAж҃Hһԭ

          13. ں(sh)Ķx(ni)ֶκ(sh)xIJͬȡֵ^(q)gвͬČt

          14. (sh)y=f(x) ĶxAȡ^(q)gMAеɂֵx1x2x= x2-x10څ^(q)gM(sh)ty= f(x2)-f(x1) 0;(sh)y=f(x)څ^(q)gMǜp(sh)ty= f(x2)-f(x1) 0

          15. һ(sh)ij^(q)gMϾІ{(dio)t@(sh)@^(q)gM(sh)p(sh)

          16. (sh)y=f(x) ĶxD@(sh)溯(sh)tDһx-xDf(-x)= -f(x)

          17. (sh)y=f(x) ĶxD@(sh)ż(sh)tDһx-xDg(-x)=g(x)

          18. һ(sh)溯(sh)t@(sh)ĈDԭc錦QĵČQDΡ

          19. һ(sh)ż(sh)t@(sh)ĈDyS錦QSSQDΡ

          20. һκ(sh)y=kx+b(k≠0)ĺ(sh)

          21. һκ(sh)ǾԺ(sh)

          22. κ(sh)y=ax2+bx+c(a≠0) ĺ(sh)

          23. aǺ(sh)y=f(x)ct@(sh)ڌ(sh)aֵ̎f(a)=0

          24. ax2+bx+c=0(a≠0)Єeʽ=b2-4ac0rЃɂȌ(sh); ax2+bx+c=0(a≠0)Єeʽ=b2-4ac=0rЃɂȌ(sh);ax2+bx+c=0(a≠0)Єeʽ=b2-4ac 0r̛]Ќ(sh)

          25. (sh)һc׃̖ct(sh)Dͨ^ԓcr^xS

          26. ָ(sh)(sh)y=ax(a0,a≠1,xR)ĺ(sh)

          27. (sh)(sh)y=logax(a0,a≠1,x0)ĺ(sh)

          28. ɂ(sh)鷴(sh)tɺ(sh)һһӳҺ(sh)f(x)׃f’(x)׃f(x)׃f’(x)׃

          29. 纯(sh)y=xa(aR)ĺ(sh)

          30. (sh)(sh)y=logax(a0,a≠1)x(0,+∞)ֵR;ڶx(ni)a1r(sh)0a1rǜp(sh);D^c(10)

          һ(sh)WıһʽP(gun)£

          ߿ĵȲ(sh)йʽw{12-09

          һ(sh)W֪RcʽĆ}10-09

          һӢZķx28ƪ11-13

          һһ02-18

          Д(sh)W֪Rc07-21

          һ(sh)WǺ(sh)ʽR03-30

          һ(sh)WʽDzʽ03-25

          п(sh)W֪Rcƽж02-06

          пĔ(sh)W֪Rcȫ06-09

          Д(sh)W(sh)W\㷨t04-12