Д(sh)W(xu)(lin)ِij֪R(sh)c(din)
(do)Z(y)Д(sh)W(xu)(lin)ِǸA͵һ(g)(sh)W(xu)ِ@(xing)ِ(hu)xγ(yu)ĿƌW(xu)˲gӭxHP(gun)֪R(sh)Ո(qng)P(gun)עCNFLAW(xu)(x)W(wng)!
Д(sh)W(xu)(lin)ِ֪R(sh)c(din)
ö 1M(fi)Rc(din) (I)
xһ(g)3(g)c(din)x֮Сc(din)@(g)εM(fi)Rc(din)
(1)ABC3(g)(ni)ǾС120°ô3lxBƽM(fi)Rc(din)ڵܽǡεM(fi)Rc(din)ҲQεĵȽ
(2)һ(ni)DzС120tgǵc(din)ǾxСc(din) (II)C
҂ҪCM(fi)Rc(din)أ
M(fi)Rc(din)CD
(1)M(fi)Rc(din)(du)߅ďǞ120
CC1B͡AA1B,BC=BA1,BA=BC1,∠CBC1=∠B+60=∠ABA1, CC1B͡AA1Bȫ,õ∠PCB=∠PA1B ͬɵ∠CBP=∠CA1P
∠PA1B+∠CA1P=60∠PCB+∠CBP=60,∠CPB=120 ͬ,∠APB=120ȣ∠APC=120 (2)PA+PB+PC=AA1
BPCc(din)BD(zhun)D(zhun)60cBDA1غϣBY(ji)PDtPDB߅∠BPD=60 ∠BPA=120APDc(din)ͬһֱ
∠CPB=∠A1DB=120∠PDB=60∠PDA1=180ȣAPDA1c(din)ͬһֱPA+PB+PC=AA1 (3)PA+PB+PC
ڡABC(ni)ȡһc(din)M(cc(din)Pغ)BY(ji)AMBMCMBMCc(din)BD(zhun)D(zhun)60cBGA1غBY(ji)AMGMA1G(ͬ)tAA1
ƽ߅M(fi)Rc(din)C(du)^麆(jin)Ҳ^о (1)߅ABCDM(fi)Rc(din)Ɍ(du)ǾACBDc(din)P
M(fi)Rc(din)
(2)ڰ߅ABCDM(fi)Rc(din)鰼c(din)D(P) (jng)^(gu)ƌ(do)҂óM(fi)Rc(din)ҷ
(dng)һ(g)(ni)Ǵڻһٶʮȵĕr(sh)M(fi)Rc(din)@(g)(ni)ǵc(din);(g)(ni)Ƕ120ԃ(ni)ôM(fi)Rc(din)ʹM(fi)Rc(din)cc(din)BɃɊAǞ120ȵc(din) (III)M(fi)Rc(din)|(zh)
M(fi)Rc(din)
(1)ƽ(ni)һc(din)PABCc(din)֮͞PA+PB+PC(dng)c(din)PM(fi)Rc(din)r(sh)x֮С У
(2).(ni)ǽС120°քe AB,BC,CA߅(c)ABC1,ACB1,BCA1,ȻBAA1,BB1,CC1,tһc(din)P,tc(din)PM(fi)Rc(din).
(3).һ(ni)Ǵڻ120,tgǵc(din). (4)(dng)ABC߅Εr(sh),˕r(sh)cM(fi)Rc(din)غ
÷˹߶ 1÷˹
÷˹C
÷˹(Menelaus)((jin)Q÷϶)ɹϣD(sh)W(xu)÷˹CġָһlֱcABC߅
AF
ABBCCAL(zhng)FDEc(din)ôCƽо^(gu) 2Ԫʽ
(1)һԪʽ÷˹
FB
BCCD
DOOA
1
DEF(xin)Dc(din)t
(sin∠ACF/sin∠FCB)(sin∠BAD/sin∠DAC)(sin∠CBA/sin∠ABE)=1 Dе{(ln)ֵ֮eڼtֵ֮e ԓʽ÷˹Ҳ܌(sh) (2)ڶԪʽ÷˹
ƽȡһc(din)OEDFt(sin∠AOF/sin∠FOB)(sin∠BOD/sin∠DOC)(sin∠COA/sin∠AOE)=1(Occ(din)ABCغ) ߶ ߶
ڡABC(ni)ȡһc(din)O
ֱAOBOCOքe(du)߅DEFt (BD/DC)*(CE/EA)*(AF/FB)=1 C(jin) ()}÷˹C ߡADCֱBOE ∴ (CB/BD)*(DO/OA)*(AE/EC)=1
ɡABDֱCOF∴ (BC/CD)*(DO/OA)*(AF/FB)=1 ÷:ã(BD/DC)*(CE/EA)*(AF/FB)=1 ()ҲeP(gun)ϵC
BD/DC=SABD/SACD=SBOD/SCOD=(SABD-SBOD)/(SACD-SCOD)=SAOB/SAOC
ͬ CE/EA=SBOC/ SAOB AF/FB=SAOC/SBOC ××ݵBD/DC*CE/EA*AF/FB=1 ߶Փ
1.O(sh)EǡABD(ni)һc(din)AEBEDEքe(du)߅CGFt(BD/BC)*(CE/AE)*(GA/DG)=1
?yn)?BC/CD)*(DG/GA)*(AF/FB)=1(߶) (BD/CD)*(CE/AE)*(AF/FB)=K(Kδ֪(sh))(BD/BC)*(CE/AE)*(GA/DG)=K(Kδ֪(sh))÷˹ã(BD/CD)*(CE/AE)*(AF/FB)=1 (BD/BC)*(CE/AE)*(GA/DG)=1 2.߶Ԫʽ
AD,BE,CFһc(din)ijֱҪlǣ
(sin∠BAD/sin∠DAC)*(sin∠ACF/sin∠FCB)*(sin∠CBE/sin∠EBA)=1 ҶeʽC
3.D(du)ڈA혴6c(din)A,B,C,D,E,FֱAD,BE,CFһc(din)ijֱҪlǣ (AB/BC)*(CD/DE)*(EF/FA)=1
߶ĽԪʽҶAL(zhng)c(du)AܽP(gun)ϵC 4.߀߶Cl߽һc(din)
O(sh)߅ABBCACĴքeDEF(j)߶涨 ?yn)?AD:DB)*(BE:EC)*(CF:FA)=[(CD*ctgA)/[(CD*ctgB)]*[(AE*ctgB)/(AE*ctgC)]*[(BF*ctgC)/[(AE*ctgB)]=1lCDAEBFһc(din)
ķɶ
ķɶDʾ
ķɶһ(g)ζ飺^(gu)ӈAϮc(din)һc(din)߅Ĵt㹲(˾Qķɾ)ķɶ涨飺һc(din)߅ֱϵӰtԓc(din)ڴεӈAϡ ķɶf(shu) P(gun)ĽY(ji)У
(1)QεĴĞHķɾPHĽc(din)龀PHc(din)@c(din)ھc(din)A (2)c(din)ķɾĽǵԓc(din)ĈAܽ
(3)ɂ(g)εӈAͬ@ӈAϵһc(din)P(du)(yng)ߵķɾĽPλßo(w)P(gun) (4)һc(din)ε߅Ĵ㹲'Ҫlԓc(din)εӈAϡ C
Cһ ABCӈAc(din)PPE⊥ACEPF⊥ABFPD⊥BCDքeBDEDF.
CPBFDPDCEABPCքeA∠FDP=∠ACP ٣(߶∠ABPa(b)) ∠PDE=∠PCE
∠ACP+∠PCE=180° ∴∠FDP+∠PDE=180°
FDE. ֮(dng)FDEr(sh)ɢ→→→ٿҊ(jin)ABPCA.
C DLMNc(din)BY(ji)BPCPtPLֱBCPMֱACPNֱABBPLN
MPLCքec(din)A
∠PBN = ∠PLN = ∠PLM = ∠PCM. ABPCc(din)A
ABPCc(din)At∠PBN = ∠PCMPLֱBCPMֱACPNֱABBPLNMPLCc(din)A
∠PBN =∠PLN =∠PCM=∠PLM. LMNc(din) P(gun)|(zh)C
BAHL(zhng)AG, BPGķɾcR,BCQ DBP(gun)
AH⊥BC,PF⊥BC==>AG//PF==>∠1=∠2
A.G.C.PA==>∠2=∠3
PE⊥AC,PF⊥BC==>P.E.F.CA==>∠3=∠4 ==>∠1=∠4 PF⊥BC ==>PR=RQ
BH⊥AC,AH⊥BC==>∠5=∠6 A.B.G.CA==>∠6=∠7 ==>∠5=∠7
AG⊥BC==>BCֱƽGH ==>∠8=∠2=∠4
∠8+∠9=90,∠10+∠4=90==>∠9=∠10 ==>HQ//DF ==>PM=MH
ڶ(g)(wn)ƽc(din)ھc(din)ADO(sh)O,G,H քeABCĺʹġ tO,_c(din)Ac(din)XYZĴG߀ ôXYZ O1 Ҳͬһֱ HG/GO=GO/GO1=2O(sh)1OHc(din)
ABCXYZλôӈAҲλơɂ(g)AĈAĶOH҃ɈA돽Ȟ1:2
GABCӈAXYZӈA(c(din)A)
HABCӈAϵBc(din)DEFӈA.... ܶ
1ă(ni) (Ptolemy)ָAă(ni)߅Ɍ(du)(du)߅˷eĺ͵ڃɗl(du)Ǿij˷e ԭģAă(ni)߅УɌ(du)Ǿεe һM(du)߅εecһM(du)߅εe֮ @(g)ƳҡҵĺͲʽһϵеǺʽܶ팍(sh)|(zh)P(gun)ڹAԵĻ|(zh). C
һ(ՓCܶҕr)
߅ABCDABEʹ∠BAE=∠CAD ∠ABE=∠ ACD ?yn)ABEסACD
BE/CD=AB/AC,BE·AC=AB·CD (1) ∠BAC=∠DAE∠ACB=∠ADE ԡABCסAED.
BC/ED=AC/ADED·AC=BC·AD (2) (1)+(2),
AC(BE+ED)=AB·CD+AD·BC ?yn)BE+ED≥BD
(H߅ABCDijAă(ni)߅Εr(sh)̖(ho)“ܶ”) }C (f)(sh)C
abcdքeʾ߅c(din)ABCDď(f)(sh)tABCDADBCACBDL(zhng)ȷքeǣ(a-b)(c-d)(a-d)(b-c)(a-c)(b-d) ע(f)(sh)ʽ (a − b)(c − d) + (a − d)(b − c) = (a − c)(b − d) ߅ȡģ\(yn)Dzʽ ̖(ho)ėl(a-b)(c-d)c(a-d)(b-c)ݗ@cABCDc(din)Aȃr(ji) c(din)ͬһƽ ƽܲʽDzʽķʽ
O(sh)ABCDLjA(ni)߅ BCϣAܽ∠BAC = ∠BDCAB∠ADB = ∠ACB ACȡһc(din)Kʹ∠ABK = ∠CBD; ?yn)?ang;ABK + ∠CBK = ∠ABC = ∠CBD + ∠ABD∠CBK = ∠ABD ˡABKcDBCͬҲСABD ~ KBC AK/AB = CD/BDCK/BC = DA/BD; AK·BD = AB·CDCK·BD = BC·DA; ʽӣ(AK+CK)·BD = AB·CD + BC·DA; AK+CK = ACAC·BD = AB·CD + BC·DAC
ܶA(ni)߅Уɗl(du)Ǿij˷e(Ɍ(du)Ǿεe)ڃɽM(du)߅˷e֮(һM(du)߅εecһM(du)߅εe֮).֪A(ni)߅ABCDCAC·BD=AB·CD+AD·BC.
CD1^(gu)CCPBDPʹ∠1=∠2∠3=∠4∴ACDסBCP.ACBC=ADBPAC·BP=AD·BC ∠ACB=∠DCP∠5=∠6∴ACBסDCP.ACCD=ABDPAC·DP=AB·CD +ڵ AC(BP+DP)=AB·CD+AD·BC.AC·BD=AB·CD+AD·BC.
Փ
1.߅ABCDAC·BD≤AB·CD+AD·BC(dng)҃H(dng)ABCDc(din)Ar(sh)ȡ̖(ho)
2.ܶ涨ͬӳһ(g)߅Ɍ(du)(du)߅˷eĺ͵ڃɗl(du)Ǿij˷et@(g)߅(ni)һA ƏV
ܲʽ߅εɽM(du)߅˷eСһM(du)߅ij˷eȡ̖(ho)(dng)҃H(dng)A (jin)εC(f)(sh)ʽ(a-b)(c-d)+(a-d)(b-c)=(a-c)(b-d)߅ȡģ òʽAC·BD≤|(a-b)(c-d)|+|(b-c)(a-d)|=AB·CD+BC·AD ע⣺
1.̖(ho)ėl(a-b)(c-d)c(a-d)(b-c)ݗȣ@cABCDc(din)Aȃr(ji) 2.c(din)ͬһƽ档
Д(sh)W(xu)(lin)ِij֪R(sh)c(din)P(gun)£
Д(sh)W(xu)(lin)ِ֪R(sh)c(din)09-19
Д(sh)W(xu)γĵ֪R(sh)c(din)01-31
Д(sh)W(xu)ijʽR08-28
Д(sh)W(xu)Ĺʽ01-17