高一數(shù)學集合教案
1.1.2集合的表示方法
一、教學目標:
1、集合的兩種表示方法(列舉法和特征性質(zhì)描述法).
2、能選擇適當?shù)姆椒ㄕ_的表示一個集合.
重點:集合的表示方法。
難點:集合的特征性質(zhì)的概念,以及運用特征性質(zhì)描述法表示集合。
二、復習回顧:
1.集合中元素的特性:______________________________________.
2.常見的數(shù)集的簡寫符號:自然數(shù)集 整數(shù)集 正整數(shù)集
有理數(shù)集 實數(shù)集
三、知識預習:
1. ___________________________________________________________________________ ____________________________________________________________________叫做列舉法;
2. _______________________ ____________________________________________________叫做集合A的一個特征性質(zhì). ___________________________________________________________________________________
叫做特征性質(zhì)描述法,簡稱描述法.
三、說明:概念的理解和注意問題
1. 用列舉法表示集合時應注意以下5點:
(1) 元素間用分隔號,
(2) 元素不重復;
(3) 不考慮元素順序;
(4) 對于含有較多元素的集合,如果構(gòu)成該集合的元素有明顯規(guī)律,可用列舉法,但必須把元素間的規(guī)律顯示清楚后方能用省略號.
(5) 無限集有時也可用列舉法表示。
2. 用特征性質(zhì)描述法表示集合時應注意以下6點;
(1) 寫清楚該集合中元素的代號(字母或用字母表達的元素符號);
(2) 說明該集合中元素的性質(zhì);
(3) 不能出現(xiàn)未被說明的字母;
(4) 多層描述時,應當準確使用且和或
(5) 所有描述的內(nèi)容都要寫在集合符號內(nèi);
(6) 用于描述的語句力求簡明,準確.
四、典例分析
題型一 用列舉法表示下列集合
例1 用列舉法表示下列集合
(1)A={x N|0
變式訓練:○1課本7頁練習A第1題。 ○2課本9頁習題A第3題。
題型二 用描述法表示集合
例2 用描述法表示下列集合
(1){-1,1} (2)大于3的全體偶數(shù)構(gòu)成的集合 (3)在平面 內(nèi),線段AB的'垂直平分線
變式訓練:課本8頁練習A第2題、練習B第2題、9頁習題A第4題。
題型三 集合表示方法的靈活運用
例3 分別判斷下列各組集合是否為同一個集合:
(1)A={x|x+32} B={y|y+32}
(2) A={(1,2)} B={1,2}
(3) M={(x,y)|y= +1} N={y| y= +1}
變式訓練:1、集合A={x|y= ,x Z,y Z},則集合A的元素個數(shù)為( )
A 4 B 5 C 10 D 12
2、課本8頁練習B第1題、習題A第1題
例4 已知集合A={x|k -8x+16=0}只有一個元素,試求實數(shù)k的值,并用列舉法表示集合A.
作業(yè):課本第9頁A組第2題、B組第1、2題。
限時訓練
1. 選擇
(1)方程組 的解集是( D )
A. (5, 4) B. C. (-5, 4) D. (5,-4)
(2)集合M= (x,y)| xy0, x , y 是( D )
A. 第一象限內(nèi)的點集 B. 第三象限內(nèi)的點集
C. 第四象限內(nèi)的點集 D. 第二、四象限內(nèi)的點集
(3)設(shè)a, b , 集合 1,a+b, a = 0, , b , 則b-a等于( C )
A. 1 B. -1 C. 2 D. -2
2. 填空
(1)已知集合A= 2, 4, x2-x , 若6 ,則x=___-2或3______.
(2)由平面直角坐標系內(nèi)第二象限的點組成的集合為__ __.
(3)下面幾種表示法:○1 ;○2 ; ○3 ;
○4(-1,2);○5 ;○6 . 能正確表示方程組
的解集的是__○2__○5_______.
(4) 用列舉法表示下列集合:
A= =___{0,1,2}________________________;
B= =___{-2,-1,0,1,2}________________________;
C= =___{(2,0), (-2,0),(0,2),(0,-2)}___________.
(5) 已知A= , B= , 則集合B=__{0,1,2}________.
3. 已知集合A= , 且-3 ,求實數(shù)a. (a= )
4. 已知集合A= .
(1) 若A中只有一個元素,求a的值;(a=0或a=1)
(2)若A中至少有一個元素,求a的取值范圍;(a1)
(3)若A中至多有一個元素,求a的取值范圍。(a=0或a1)
【高一數(shù)學集合教案】相關(guān)文章:
高一數(shù)學直觀圖教案02-24
高一數(shù)學《集合》知識點07-20
高一數(shù)學集合知識點11-30
高一數(shù)學必修三教案5篇07-27
高一數(shù)學下冊《圓的方程》教案設(shè)計12-07
高一數(shù)學《指對數(shù)的運算》教案設(shè)計12-07
高一數(shù)學必修一知識點:集合11-03
高一數(shù)學重點知識點:集合10-27