高二數(shù)學(xué)優(yōu)秀不等式教案
教學(xué)目的:
1.掌握常用基本不等式,并能用之證明不等式和求最值;
2.掌握含絕對(duì)值的不等式的性質(zhì);
3.會(huì)解簡(jiǎn)單的高次不等式、分式不等式、含絕對(duì)值的不等式、簡(jiǎn)單的無(wú)理不等式、指數(shù)不等式和對(duì)數(shù)不等式.學(xué)會(huì)運(yùn)用數(shù)形結(jié)合、分類討論、等價(jià)轉(zhuǎn)換的思想方法分析和解決有關(guān)
教學(xué)過(guò)程:
一、復(fù)習(xí)引入:本章知識(shí)點(diǎn)
二、講解范例:幾類常見(jiàn)的問(wèn)題
(一) 含參數(shù)的不等式的解法
例1解關(guān)于x的不等式 .
例2解關(guān)于x的'不等式 .
例3解關(guān)于x的不等式 .
例4解關(guān)于x的不等式
例5 滿足 的x的集合為A;滿足 的x
的集合為B 1 若AB 求a的取值范圍 2 若AB 求a的取值范圍 3 若AB為僅含一個(gè)元素的集合,求a的值.
(二)函數(shù)的最值與值域
例6 求函數(shù) 的最大值,下列解法是否正確?為什么?
解一: ,
解二: 當(dāng) 即 時(shí),
例7 若 ,求 的最值。
例8 已知x , y為正實(shí)數(shù),且 成等差數(shù)列, 成等比數(shù)列,求 的取值范圍.
例9 設(shè) 且 ,求 的最大值
例10 函數(shù) 的最大值為9,最小值為1,求a,b的值。
三、作業(yè):
1.
2. , 若 ,求a的取值范圍
3.
4.
5.當(dāng)a在什么范圍內(nèi)方程: 有兩個(gè)不同的負(fù)根
6.若方程 的兩根都對(duì)于2,求實(shí)數(shù)m的范圍
7.求下列函數(shù)的最值:
1
2
8.1 時(shí)求 的最小值, 的最小值
2設(shè) ,求 的最大值
3若 , 求 的最大值
4若 且 ,求 的最小值
9.若 ,求證: 的最小值為3
10.制作一個(gè)容積為 的圓柱形容器(有底有蓋),問(wèn)圓柱底半徑和
高各取多少時(shí),用料最省?(不計(jì)加工時(shí)的損耗及接縫用料)
【高二數(shù)學(xué)優(yōu)秀不等式教案】相關(guān)文章:
高二數(shù)學(xué)不等式學(xué)習(xí)方法03-03
高二數(shù)學(xué)必修:不等式單元知識(shí)總結(jié)01-29
高二數(shù)學(xué)知識(shí)點(diǎn):不等式的解法01-28
高二數(shù)學(xué)知識(shí)點(diǎn)之不等式的解法01-28
高二英語(yǔ)MainlyRevision優(yōu)秀教案04-20
中考數(shù)學(xué)知識(shí)考點(diǎn):不等式01-31
初中數(shù)學(xué)不等式證明方法總結(jié)10-28