八年級數(shù)學(xué)下第4章因式分解單元訓(xùn)練題
數(shù)學(xué)是一門很鍛煉思維的學(xué)科,多做練習(xí)題有利于鞏固數(shù)學(xué)知識,下文是小編整理的相關(guān)內(nèi)容,歡迎閱讀。
一、選擇題
1.下列各式從左到右的變形,正確的是( )
A.﹣x﹣y=﹣(x﹣y) B.﹣a+b=﹣(a+b) C.(y﹣x)2=(x﹣y)2 D.(a﹣b)3=(b﹣a)3
2.下列因式分解正確的是( )
A. B.
C. D.
3.多項式 與多項式 的公因式是( )
A. B. C. D.
4.將多項式a(b﹣2)﹣a2(2﹣b)因式分解的結(jié)果是( )
A.(b﹣2)(a+a2) B.(b﹣2)(a﹣a2) C.a(b﹣2)(a+1) D.a(b﹣2)(a﹣1)
5.下列等 式不一定成立的是( )
A. B.
C. D.
6.下列各式的變形中,正確的是( )
A. B.
C. D.
二、填空題
7.﹣xy2(x+y)3+x(x+y)2的公因式是 ;
(2)4x(m﹣n)+8y(n﹣m)2的公因式是 .
8.(2015南京)分解因式 的結(jié)果是 .
9.(2015內(nèi)江)已知實數(shù)a ,b滿足: , ,則 |= .
10.已知(2x﹣21)(3x﹣7)﹣(3x﹣7)(x﹣13)可分解因式為(3x+a)(x+b),其中a、b均為整數(shù),則a+3b= .
11.若a-b=3,ab=2,則a2b-ab2=
三、解答題
12.將下列各式因式分解:
(1)5a3b(a﹣b)3﹣10a4b3(b﹣a)2;
(2)(b﹣a)2+a(a﹣b)+b(b﹣a);
(3)(3a﹣4b)(7a﹣8b)+(11a﹣12b)(8b﹣7a);
(4)x(b+c﹣d)﹣y(d﹣b﹣c)﹣c﹣b+d.
13.若x,y滿足 ,求7y(x﹣3y)2﹣2(3y﹣x)3的值.
14.先閱讀下面的材料,再因式分解:
要把多項式am+an+bm+bn因式分解,可以先把它的前兩項分成一組,并提出a;把它的`后兩項分成一組,并提出b,從而得至a(m+n)+b(m+n).這時,由于a(m+n)+b(m+n),又有因式(m+n),于是可提公因式(m+n),從而得到(m+n)(a+b).因此有am+an+bm+bn=(am+an)+(bm+bn)=a(m+n)+b(m+n)=(m+n)(a+b).這種因式分解的方法叫做分組分解法.如果把一個多項式的項分組并提出公因式后,它們的另一個因式正好相同,那么這個多項式就可以利用分組分解法來因式分解了.
請用上面材料中提供的方法因式分解:
(1)ab﹣ac+bc﹣b2:
(2)m2﹣mn+mx﹣nx;
(3)xy2﹣2xy+2y﹣4.
15.求使不等式成立的x的取值范圍:
(x﹣1)3﹣(x﹣1)(x2﹣2x+3)≥0.
16.閱讀題:因式分解:1+x+x(x+1)+x(x+1)2
解:原式=(1+x)+x(x+1)+x(x+1)2
=(1+x)[1+x+x(x+1)]
=(1+x)[(1+x)+x(1+x)]
=(1+x)2(1+x)
=(1+x)3.
(1)本題提取公因式幾次?
(2)若將題目改為1+x+x(x+1)+…+x(x+1)n,需提公因式多少次?結(jié)果是什么?
《第4章 因式分解》參考答案
一、選擇題
1.C2.D3.D4.C5.A6. B
二、填空題
7.
解:(1)﹣xy2(x+y)3+x(x+y)2的公因式是x(x+y)2;
(2)4x(m﹣n)+8y(n﹣m)2的公因式是4(m﹣n).
故答案為:4(m﹣n)x(x+y)2.
8.
解:(x+3)2﹣(x+3),
=(x+3)(x+3﹣1),
=(x+2)(x+3).
9.
解:n(m﹣n)(p﹣q)﹣n(n﹣m)(p﹣q)
=n(m﹣n)(p﹣q)+n(m﹣n)(p﹣q)
=2n(m﹣n)(p﹣q).
故答案為:2n(m﹣n)(p﹣q).
10.
解:(2x﹣21)(3x﹣7)﹣(3x﹣7)(x﹣13),
=(3x﹣7)(2x﹣21﹣x+13),
=(3x﹣7)(x﹣8)
=(3x+a)(x+b),
則a=﹣7,b=﹣8,
故a+3b=﹣7﹣24=﹣31,
故答案為:﹣31.
三、解答題
11.
解:(1)5a3b(a﹣b)3﹣10a4b3(b﹣a)2
=5a3b(a﹣b)2(a﹣b﹣2ab2)
(2)(b﹣a)2+a(a﹣b)+b(b﹣a)
=(a﹣b)(a﹣b+a﹣b)
=2(a﹣b)2;
(3)(3a﹣4b)(7a﹣8b)+(11a﹣12b)(8b﹣7a)
=(7a﹣8b)(3a﹣4b﹣11a+12b)
=8(7a﹣8b)(b﹣a)
(4)x(b+c﹣d)﹣y(d﹣b﹣c)﹣c﹣b+d
=(b+c﹣d)(x+y﹣1).
12.
解:7y(x﹣3y)2﹣2(3y﹣x)3,
=7y(x﹣3y)2+2(x﹣3y)3,
=(x﹣3y)2[7y+2(x﹣3y)],
=(x﹣3y)2(2x+y),
當(dāng) 時,原式=12×6=6.
13.
解:(1)ab﹣ac+bc﹣b2=a(b﹣c)+b(c﹣b)=(a﹣b)(b﹣c);
(2)m2﹣mn+mx﹣nx=m(m﹣n)+x(m﹣n)=(m﹣n)(m﹣x);
(3)xy2﹣2xy+2y﹣4
=xy(y﹣2)+2(y﹣2)
=(y﹣2)(xy+2).
14.
解:(x﹣1)3﹣(x﹣1)(x2﹣2x+3)
=(x﹣1)3﹣(x﹣1)2(x﹣2)
=(x﹣1)2(x+1);
因(x﹣1)2是非負(fù)數(shù),要使(x﹣1)3﹣(x﹣1)(x2﹣2x+3)≥0,
只要x+1≥0即可,
即x≥﹣1.
15.
解:(1)共提取了兩次公因式;
(2)將題目改為1+x+x(x+1)+…+x(x+1)n,需提公因式n次,結(jié)果是(x+1)n+1.
16.
解:x(x﹣y)﹣y(y﹣x)
=(x﹣y)(x+y);
因為x,y都是自然數(shù),又12=1×12=2×6=3×4;
經(jīng)驗證(4﹣2)×(4+2)=2×6符合條件;
所以x=4,y=2.
【八年級數(shù)學(xué)下第4章因式分解單元訓(xùn)練題】相關(guān)文章:
四年級數(shù)學(xué)上冊第一單元訓(xùn)練題02-05
2017年四年級上冊數(shù)學(xué)第2單元訓(xùn)練題02-05
六年級數(shù)學(xué)上冊第七單元能力訓(xùn)練題02-04
小學(xué)四年級數(shù)學(xué)上冊第五單元訓(xùn)練題02-04
初中數(shù)學(xué)因式分解同步練習(xí)試題12-17
高一數(shù)學(xué)上冊復(fù)習(xí)訓(xùn)練題10-17