初中數(shù)學(xué)公式順口溜
在日常過程學(xué)習(xí)中,大家都對那些朗朗上口的順口溜很是熟悉吧,順口溜使用得當甚至可以達到貨賣清場的目的。你還在找尋優(yōu)秀經(jīng)典的順口溜嗎?以下是小編幫大家整理的初中數(shù)學(xué)公式順口溜,僅供參考,歡迎大家閱讀。
初中數(shù)學(xué)公式順口溜 篇1
有理數(shù)加法運算
同號兩數(shù)來相加,絕對值加不變號
異號相加大減小,大數(shù)決定和符號
互為相反數(shù)求和,結(jié)果是零須記好
【注】“大”減“小”是指絕對值的大小
有理數(shù)減法運算
減正等于加負,減負等于加正
有理數(shù)的乘法運算符號法則
同號得正異號負,一項為零積是零
合并同類項
說起合并同類項,法則千萬不能忘
只求系數(shù)代數(shù)和,字母指數(shù)留原樣
去、添括號法
去括號或添括號,關(guān)鍵要看連接號
擴號前面是正號,去添括號不變號
括號前面是負號,去添括號都變號
解方程
已知未知鬧分離,分離要靠移完成
移加變減減變加,移乘變除除變乘
平方差公式
兩數(shù)和乘兩數(shù)差,等于兩數(shù)平方差
積化和差變兩項,完全平方不是它
完全平方式
首平方又末平方,二倍首末在中央
和的平方加再加,先減后加差平方
解一元一次方程
先去分母再括號,移項變號要記牢
同類各項去合并,系數(shù)化“1”還沒好
求得未知須檢驗,回代值等才算了
因式分解與方程
和差化積是乘法,乘法本身是運算
積化和差是分解,因式分解非運算
因式分解
兩式平方符號異,因式分解你別怕
兩底和乘兩底差,分解結(jié)果就是它
兩式平方符號同,底積2倍坐中央
因式分解能與否,符號上面有文章
同和異差先平方,還要加上正負號
同正則正負就負,異則需添冪符號
因式分解
一提二套三分組,十字相乘也上數(shù)
四種方法都不行,拆項添項去重組
重組無望試求根,換元或者算余數(shù)
多種方法靈活選,連乘結(jié)果是基礎(chǔ)
同式相乘若出現(xiàn),乘方表示要記住
【注】一提(提公因式)二套(套公式)
因式分解
一提二套三分組,叉乘求根也上數(shù)
五種方法都不行,拆項添項去重組
對癥下藥穩(wěn)又準,連乘結(jié)果是基礎(chǔ)
二次三項式的因式分解
先想完全平方式,十字相乘是其次
兩種方法行不通,求根分解去嘗試
比和比例
兩數(shù)相除也叫比,兩比相等叫比例
外項積等內(nèi)項積,等積可化八比例
分別交換內(nèi)外項,統(tǒng)統(tǒng)都要叫更比
同時交換內(nèi)外項,便要稱其為反比
前后項和比后項,比值不變叫合比
前后項差比后項,組成比例是分比
兩項和比兩項差,比值相等合分比
前項和比后項和,比值不變叫等比
解比例
外項積等內(nèi)項積,列出方程并解之
求比值
由已知去求比值,多種途徑可利用
活用比例七性質(zhì),變量替換也走紅
消元也是好辦法,殊途同歸會變通
正比例和反比例
商定變量成正比,積定變量成反比
正比例和反比例
變化過程商一定,兩個變量成正比
變化過程積一定,兩個變量成反比
判斷四數(shù)成比例
四數(shù)是否成比例,遞增遞減先排序
兩端積等中間積,四數(shù)一定成比例
比例中項
成比例的四項中,外項相同會遇到
有時內(nèi)項會相同,比例中項少不了
比例中項很重要,多種場合會碰到
成比例的四項中,外項相同有不少
有時內(nèi)項會相同,比例中項出現(xiàn)了
同數(shù)平方等異積,比例中項無處逃
根式和無理式
表示方根代數(shù)式,都可稱其為根式
根式異于無理式,被開方式無限制
被開方式有字母,才能稱為無理式
無理式都是根式,區(qū)分它們有標志
被開方式有字母,又可稱為無理式
求定義域
求定義域有講究,四項原則須留意
負數(shù)不能開平方,分母為零無意義
指是分數(shù)底正數(shù),數(shù)零沒有零次冪
限制條件不唯一,滿足多個不等式
求定義域要過關(guān),四項原則須注意
負數(shù)不能開平方,分母為零無意義
分數(shù)指數(shù)底正數(shù),數(shù)零沒有零次冪
限制條件不唯一,不等式組求解集
解一元一次不等式
先去分母再括號,移項合并同類項
系數(shù)化“1”有講究,同乘除負要變向
先去分母再括號,移項別忘要變號
同類各項去合并,系數(shù)化“1”注意了
同乘除正無防礙,同乘除負也變號
解一元一次不等式組
大于頭來小于尾,大小不一中間找
大大小小沒有解,四種情況全來了
同向取兩邊,異向取中間
中間無元素,無解便出現(xiàn)
幼兒園小鬼當家,(同小相對取較小)
敬老院以老為榮,(同大就要取較大)
軍營里沒老沒少。(大小小大就是它)
大大小小解集空。(小小大大哪有哇)
解一元二次不等式
首先化成一般式,構(gòu)造函數(shù)第二站
判別式值若非負,曲線橫軸有交點
A正開口它向上,大于零則取兩邊
代數(shù)式若小于零,解集交點數(shù)之間
方程若無實數(shù)根,口上大零解為全
小于零將沒有解,開口向下正相反
用平方差公式因式分解
異號兩個平方項,因式分解有辦法
兩底和乘兩底差,分解結(jié)果就是它
用完全平方公式因式分解
兩平方項在兩端,底積2倍在中部
同正兩底和平方,全負和方相反數(shù)
分成兩底差平方,方正倍積要為負
兩邊為負中間正,底差平方相反數(shù)
一平方又一平方,底積2倍在中路
三正兩底和平方,全負和方相反數(shù)
分成兩底差平方,兩端為正倍積負
兩邊若負中間正,底差平方相反數(shù)
用公式法解一元二次方程
要用公式解方程,首先化成一般式
調(diào)整系數(shù)隨其后,使其成為最簡比
確定參數(shù)abc,計算方程判別式
判別式值與零比,有無實根便得知
有實根可套公式,沒有實根要告之
常規(guī)的配方法解一元二次方程
左未右已先分離,二系化“1”是其次
一系折半再平方,兩邊同加沒問題
左邊分解右合并,直接開方去解題
該種解法叫配方,解方程時多練習(xí)
間接的配方法解一元二次方程
已知未知先分離,因式分解是其次
調(diào)整系數(shù)等互反,和差積套恒等式
完全平方等常數(shù),間接配方顯優(yōu)勢
【注】恒等式
解一元二次方程
方程沒有一次項,直接開方最理想
如果缺少常數(shù)項,因式分解沒商量
b、c相等都為零,等根是零不要忘
b、c同時不為零,因式分解或配方
也可直接套公式,因題而異擇良方
正比例函數(shù)的鑒別的判斷
正比例函數(shù),檢驗當分兩步走
一量表示另一量,是與否
若有還要看取值,全體實數(shù)都要有
正比例函數(shù)是否,辨別需分兩步走
一量表示另一量,有沒有
若有再去看取值,全體實數(shù)都需要
區(qū)分正比例函數(shù),衡量可分兩步走
一量表示另一量,是與否
若有還要看取值,全體實數(shù)都要有
正比例函數(shù)的圖像與性質(zhì)
正比函數(shù)圖直線,經(jīng)過象限和原點
K正一三負二四,變化趨勢記心間
K正左低右邊高,同大同小向爬山
K負左高右邊低,一大另小下山巒
一次函數(shù)
一次函數(shù)圖直線,經(jīng)過兩個特殊點
K正左低右邊高,越走越高向爬山
K負左高右邊低,越來越低很明顯
K稱斜率b截距,截距為零變正函
反比例函數(shù)
反比函數(shù)雙曲線,經(jīng)過象限不過點
K正一三負二四,兩軸是它漸近線
K正左高右邊低,一三象限滑下山
K負左低右邊高,二四象限如爬山
二次函數(shù)
二次方程零換y,二次函數(shù)便出現(xiàn)
全體實數(shù)定義域,圖像叫做拋物線
拋物線有對稱軸,兩邊單調(diào)正相反
A定開口及大小,線軸交點叫頂點
頂點非高即最低。上低下高很顯眼
如果要畫拋物線,平移也可去描點
提取配方定頂點,兩條途徑再挑選
列表描點后連線,平移規(guī)律記心間
左加右減括號內(nèi),號外上加下要減
二次方程零換y,就得到二次函數(shù)
圖像叫做拋物線,定義域全體實數(shù)
A定開口及大小,開口向上是正數(shù)
絕對值大開口小,開口向下A負數(shù)
拋物線有對稱軸,增減特性可看圖
線軸交點叫頂點,頂點縱標最值出
如果要畫拋物線,描點平移兩條路
提取配方定頂點,平移描點皆成圖
列表描點后連線,三點大致定全圖
若要平移也不難,先畫基礎(chǔ)拋物線
頂點移到新位置,開口大小隨基礎(chǔ)
【注】基礎(chǔ)拋物線
直線、射線和線段
直線射線與線段,形狀相似有關(guān)聯(lián)
直線長短不確定,可向兩方無限延
射線僅有一端點,反向延長成直線
線段定長兩端點,雙向延伸變直線
兩點定線是共性,組成圖形最常見
角一點出發(fā)兩射線,組成圖形叫做角
共線反向是平角,平角之半叫直角
平角兩倍成周角,小于直角叫銳角
直平之間是鈍角,平周之間叫優(yōu)角
互余兩角和直角,和是平角互補角
一點出發(fā)兩射線,組成圖形叫做角
平角反向且共線,平角之半叫直角
平角兩倍成周角,小于直角叫銳角
鈍角界于直平間,平周之間叫優(yōu)角
和為直角叫互余,互為補角和平角
證等級和比例線段
等積或比例線段,多種途徑可以證
證等積要改等比,對照圖形看特征
共點共線線相交,平行截比把題證
三點定型十分像,想法來把相似證
圖形明顯不相似,等線段比替換證
換后結(jié)論能成立,原來命題即得證
實在不行用面積,射影角分線也成
只要學(xué)習(xí)肯登攀,手腦并用無不勝
解無理方程
一無一有各一邊,兩無也要放兩邊
乘方根號無蹤跡,方程可解無負擔
兩無一有相對難,兩次乘方也好辦
特殊情況去換元,得解驗根是必然
解分式方程
先約后乘公分母,整式方程轉(zhuǎn)化出
特殊情況可換元,去掉分母是出路
求得解后要驗根,原留增舍別含糊
列方程解運用題
列方程解應(yīng)用題,審設(shè)列解雙檢答
審題弄清已未知,設(shè)元直間兩辦法
列表畫圖造方程,解方程時守章法
檢驗準且合題意,問求同一才作答
添加輔助線
學(xué)習(xí)幾何體會深,成敗也許一線牽
分散條件要集中,常要添加輔助線
畏懼心理不要有,其次要把觀念變
熟能生巧有規(guī)律,真知灼見靠實踐
圖中已知有中線,倍長中線把線連
旋轉(zhuǎn)構(gòu)造全等形,等線段角可代換
多條中線連中點,便可得到中位線
倘若知角平分線,既可兩邊作垂線
也可沿線去翻折,全等圖形立呈現(xiàn)
角分線若加垂線,等腰三角形可見
角分線加平行線,等線段角位置變
已知線段中垂線,連接兩端等線段
輔助線必畫虛線,便與原圖聯(lián)系看
兩點間距離公式
同軸兩點求距離,大減小數(shù)就為之
與軸等距兩個點,間距求法亦如此
平面任意兩個點,橫縱標差先求值
差方相加開平方,距離公式要牢記
矩形的判斷
任意一個四邊形,三個直角成矩形
對角線等互平分,四邊形它是矩形
已知平行四邊形,一個直角叫矩形
兩對角線若相等,理所當然為矩形
棱形的判斷
任意一個四邊形,四邊相等成菱形
四邊形的對角線,垂直互分是菱形
已知平行四邊形,鄰邊相等叫菱形
兩對角線若垂直,順理成章為菱形
初中數(shù)學(xué)公式順口溜 篇2
切線公式定理
、僦本L和⊙O相交d
、谥本L和⊙O相切d=r
③直線L和⊙O相離d>r
切線的判定定理 經(jīng)過半徑的外端并且垂直于這條半徑的直線是圓的切線
切線的性質(zhì)定理 圓的切線垂直于經(jīng)過切點的半徑
推論1 經(jīng)過圓心且垂直于切線的直線必經(jīng)過切點
推論2 經(jīng)過切點且垂直于切線的直線必經(jīng)過圓心
切線長定理 從圓外一點引圓的兩條切線,它們的切線長相等,圓心和這一點的連線平分兩條切線的夾角
圓的外切四邊形的兩組對邊的和相等
弦切角定理 弦切角等于它所夾的弧對的圓周角
推論 如果兩個弦切角所夾的弧相等,那么這兩個弦切角也相等
相交弦定理 圓內(nèi)的兩條相交弦,被交點分成的兩條線段長的積相等
正方形定理公式
正方形的特征:
、僬叫蔚乃倪呄嗟;
、谡叫蔚乃膫角都是直角;
③正方形的兩條對角線相等,且互相垂直平分,每一條對角線平分一組對角;
正方形的判定:
、儆幸粋角是直角的菱形是正方形;
、谟幸唤M鄰邊相等的矩形是正方形。
希望上面對正方形定理公式知識的講解學(xué)習(xí),同學(xué)們都能很好的掌握,相信同學(xué)們會取得很好的成績的哦。
初中數(shù)學(xué)平行四邊形定理公式
平行四邊形
平行四邊形的性質(zhì):
、倨叫兴倪呅蔚膶呄嗟;
、谄叫兴倪呅蔚'對角相等;
、燮叫兴倪呅蔚膶蔷互相平分;
平行四邊形的判定:
、賰山M對角分別相等的四邊形是平行四邊形;
、趦山M對邊分別相等的四邊形是平行四邊形;
、蹖蔷互相平分的四邊形是平行四邊形;
、芤唤M對邊平行且相等的四邊形是平行四邊形。
上面對數(shù)學(xué)中平行四邊形定理公式知識的講解學(xué)習(xí),同學(xué)們都能很好的掌握了吧,相信同學(xué)們會從中學(xué)習(xí)的更好的哦。
初中數(shù)學(xué)直角三角形定理公式
直角三角形的性質(zhì):
①直角三角形的兩個銳角互為余角;
、谥苯侨切涡边吷系闹芯等于斜邊的一半;
③直角三角形的兩直角邊的平方和等于斜邊的平方(勾股定理);
、苤苯侨切沃30度
角所對的直角邊等于斜邊的一半;
直角三角形的判定:
①有兩個角互余的三角形是直角三角形;
②如果三角形的三邊長a、b 、c有下面關(guān)系a^2+b^2=c^2,那么這個三角形是直角三角形(勾股定理的逆定理)。
以上對數(shù)學(xué)直角三角形定理公式的內(nèi)容講解學(xué)習(xí),同學(xué)們都能很好的掌握了吧,希望同學(xué)們都能考試成功。
初中數(shù)學(xué)等腰三角形的性質(zhì)定理公式
等腰三角形的性質(zhì):
、俚妊切蔚膬蓚底角相等;
、诘妊切蔚捻斀瞧椒志、底邊上的中線、底邊上的高互相重合(三線合一)
上面對等腰三角形的性質(zhì)定理公式的內(nèi)容講解學(xué)習(xí),同學(xué)們都能很好的掌握了吧,希望同學(xué)們在考試中取得很好的成績。
初中數(shù)學(xué)三角形定理公式
對于三角形定理公式的學(xué)習(xí),我們做下面的內(nèi)容講解學(xué)習(xí)哦。
三角形
三角形的三邊關(guān)系定理及推論:三角形的兩邊之和大于第三邊,兩邊之差小于第三邊;
三角形的內(nèi)角和定理:三角形的三個內(nèi)角的和等于180度;
三角形的外角和定理:三角形的一個外角等于和它不相鄰的兩個的和;
三角形的外角和定理推理:三角形的一個外角大于任何一個和它不相鄰的內(nèi)角;
三角形的三條角平分線交于一點(內(nèi)心);
三角形的三邊的垂直平分線交于一點(外心);
三角形中位線定理:三角形兩邊中點的連線平行于第三邊,并且等于第三邊的一半;
【初中數(shù)學(xué)公式順口溜】相關(guān)文章:
初中的數(shù)學(xué)公式01-29
常見的初中數(shù)學(xué)公式01-29
初中數(shù)學(xué)公式大全01-29
初中數(shù)學(xué)公式集錦01-29
初中必備數(shù)學(xué)公式01-29
人教版初中數(shù)學(xué)公式01-28
初中數(shù)學(xué)公式定理大全01-29
初中常用的數(shù)學(xué)公式01-29