高一數(shù)學(xué)上冊《奇偶性》知識點(diǎn)
數(shù)學(xué)是研究數(shù)量、結(jié)構(gòu)、變化、空間以及信息等概念的一門學(xué)科,下面是小編整理的高一數(shù)學(xué)上冊《奇偶性》知識點(diǎn),希望對大家有幫助!
1.定義
一般地,對于函數(shù)f(x)
(1)如果對于函數(shù)定義域內(nèi)的任意一個(gè)x,都有f(-x)=-f(x),那么函數(shù)f(x)就叫做奇函數(shù)。
(2)如果對于函數(shù)定義域內(nèi)的任意一個(gè)x,都有f(-x)=f(x),那么函數(shù)f(x)就叫做偶函數(shù)。
(3)如果對于函數(shù)定義域內(nèi)的任意一個(gè)x,f(-x)=-f(x)與f(-x)=f(x)同時(shí)成立,那么函數(shù)f(x)既是奇函數(shù)又是偶函數(shù),稱為既奇又偶函數(shù)。
(4)如果對于函數(shù)定義域內(nèi)的任意一個(gè)x,f(-x)=-f(x)與f(-x)=f(x)都不能成立,那么函數(shù)f(x)既不是奇函數(shù)又不是偶函數(shù),稱為非奇非偶函數(shù)。
說明:①奇、偶性是函數(shù)的整體性質(zhì),對整個(gè)定義域而言
、谄、偶函數(shù)的'定義域一定關(guān)于原點(diǎn)對稱,如果一個(gè)函數(shù)的定義域不關(guān)于原點(diǎn)對稱,則這個(gè)函數(shù)一定不是奇(或偶)函數(shù)。
(分析:判斷函數(shù)的奇偶性,首先是檢驗(yàn)其定義域是否關(guān)于原點(diǎn)對稱,然后再嚴(yán)格按照奇、偶性的定義經(jīng)過化簡、整理、再與f(x)比較得出結(jié)論)
、叟袛嗷蜃C明函數(shù)是否具有奇偶性的根據(jù)是定義
2.奇偶函數(shù)圖像的特征:
定理奇函數(shù)的圖像關(guān)于原點(diǎn)成中心對稱圖表,偶函數(shù)的圖象關(guān)于y軸或軸對稱圖形。
f(x)為奇函數(shù)《==》f(x)的圖像關(guān)于原點(diǎn)對稱
點(diǎn)(x,y)→(-x,-y)
奇函數(shù)在某一區(qū)間上單調(diào)遞增,則在它的對稱區(qū)間上也是單調(diào)遞增。
偶函數(shù)在某一區(qū)間上單調(diào)遞增,則在它的對稱區(qū)間上單調(diào)遞減。
3.奇偶函數(shù)運(yùn)算
(1).兩個(gè)偶函數(shù)相加所得的和為偶函數(shù).
(2).兩個(gè)奇函數(shù)相加所得的和為奇函數(shù).
(3).一個(gè)偶函數(shù)與一個(gè)奇函數(shù)相加所得的和為非奇函數(shù)與非偶函數(shù).
(4).兩個(gè)偶函數(shù)相乘所得的積為偶函數(shù).
(5).兩個(gè)奇函數(shù)相乘所得的積為偶函數(shù).
(6).一個(gè)偶函數(shù)與一個(gè)奇函數(shù)相乘所得的積為奇函數(shù).
【高一數(shù)學(xué)上冊《奇偶性》知識點(diǎn)】相關(guān)文章:
高一數(shù)學(xué)上冊知識點(diǎn):指數(shù)函數(shù)及函數(shù)奇偶性10-17
高一必修一數(shù)學(xué)知識點(diǎn):函數(shù)奇偶性11-05
高一數(shù)學(xué)知識點(diǎn)總結(jié):指數(shù)函數(shù)、函數(shù)奇偶性10-11
高一數(shù)學(xué)上冊知識點(diǎn)整理:集合10-13
高一數(shù)學(xué)上冊知識點(diǎn):冪函數(shù)10-10
高一數(shù)學(xué)上冊函數(shù)與方程知識點(diǎn)12-03
高一數(shù)學(xué)上冊《函數(shù)的應(yīng)用》知識點(diǎn)12-01