- 相關推薦
2017最新高考數(shù)學高頻考點:等差數(shù)列
導語:一般地,如果一個數(shù)列從第2項起,每一項與它的前一項的差等于同一個常數(shù),這個數(shù)列就叫做等差數(shù)列,這個常數(shù)叫做等差數(shù)列的公差,公差通常用字母d表示,前n項和用Sn表示。下面是小編為大家整理的,數(shù)學知識,更多相關信息請關注CNFLA相關欄目!
高考數(shù)學高頻考點:等差數(shù)列
1.等差數(shù)列通項公式
an=a1+(n-1)d
n=1時a1=S1
n≥2時an=Sn-Sn-1
an=kn+b(k,b為常數(shù))推導過程:an=dn+a1-d令d=k,a1-d=b則得到an=kn+b
2.等差中項
由三個數(shù)a,A,b組成的等差數(shù)列可以堪稱最簡單的等差數(shù)列。這時,A叫做a與b的等差中項(arithmeticmean)。
有關系:A=(a+b)÷2
點擊查看:高考數(shù)學知識點大全
3.前n項和
倒序相加法推導前n項和公式:
Sn=a1+a2+a3+·····+an
=a1+(a1+d)+(a1+2d)+······+[a1+(n-1)d]①
Sn=an+an-1+an-2+······+a1
=an+(an-d)+(an-2d)+······+[an-(n-1)d]②
由①+②得2Sn=(a1+an)+(a1+an)+······+(a1+an)(n個)=n(a1+an)
∴Sn=n(a1+an)÷2
等差數(shù)列的前n項和等于首末兩項的和與項數(shù)乘積的一半:
Sn=n(a1+an)÷2=na1+n(n-1)d÷2
Sn=dn2÷2+n(a1-d÷2)
亦可得
a1=2sn÷n-an=[sn-n(n-1)d÷2]÷n
an=2sn÷n-a1
有趣的是S2n-1=(2n-1)an,S2n+1=(2n+1)an+1
4.等差數(shù)列性質(zhì)
一、任意兩項am,an的關系為:
an=am+(n-m)d
它可以看作等差數(shù)列廣義的通項公式。
二、從等差數(shù)列的定義、通項公式,前n項和公式還可推出:
a1+an=a2+an-1=a3+an-2=…=ak+an-k+1,k∈N*
三、若m,n,p,q∈N*,且m+n=p+q,則有am+an=ap+aq
四、對任意的k∈N*,有
Sk,S2k-Sk,S3k-S2k,…,Snk-S(n-1)k…成等差數(shù)列。
【最新高考數(shù)學高頻考點:等差數(shù)列】相關文章:
2017關于高考數(shù)學高頻考點:等比數(shù)列11-27
注意啦!中考數(shù)學高頻考點11-27
2017高考數(shù)高頻考點有哪些11-26
高考數(shù)學最容易丟分的考點11-26
高考數(shù)學6大類考點11-19
18個高考數(shù)學常見的易錯考點11-26
2016高考數(shù)學知識點考點大全11-27
高考高頻的180個成語10-25
高考?嫉牡炔顢(shù)列公式歸納12-09
2016高考英語必考點預測11-27